R语言绘制动态网络图Network教程WGCNA

今天分享的笔记是使用NetworkD3对WGCNA的共表达网络进行可视化,创建交互式动态网络图,展示基因之间的相互关系,可以用于转录组或者其他调控网络展示。

加权基因共表达网络分析 (WGCNA, Weighted correlation network analysis)是用来描述不同样品之间基因关联模式的系统生物学方法,可以用来鉴定高度协同变化的基因集,并根据基因集的内连性和基因集与表型之间的关联鉴定候补生物标记基因或治疗靶点。

alt

例如上图展示特异性模块内的基因共表达网络,点的大小和深浅代表该基因在网络中连通性的高低。转录因子用三角形表示, 其他基因用圆形表示。

如何绘制动态网络图?

首先,加载R包和数据,所用到的数据是WGCNA分析得到的输出网络文件,格式是Cytoscape的输入格式,本文的示例数据已上传,留言区回复邮箱,系统自动发送示例数据和全部代码。

library(networkD3)
library(tidyverse)
library(vroom)

df_node <- vroom::vroom("CytoscapeInput-nodes-black.txt")
df_edge <- vroom::vroom("CytoscapeInput-edges-black.txt")

> head(df_node)
# A tibble: 6 × 3
  nodeName  altName   `nodeAttr[nodesPresent, ]`
  <chr>     <chr>     <chr>                     
1 AT1G01010 AT1G01010 black                     
2 AT1G01090 AT1G01090 black                     
3 AT1G01180 AT1G01180 black                     
                  
> head(df_edge)
# A tibble: 6 × 6
  fromNode  toNode    weight direction  fromAltName toAltName
  <chr>     <chr>      <dbl> <chr>      <chr>       <chr>    
1 AT1G69920 AT1G71030  0.445 undirected AT1G69920   AT1G71030
2 AT1G15125 AT1G71030  0.440 undirected AT1G15125   AT1G71030
3 AT1G02920 AT1G71030  0.438 undirected AT1G02920   AT1G71030

df_node文件保存节点信息,df_edge保存边的信息,包括起始位置和结束为止,以及连线的权重大小。这里每个节点可以表示一个基因,节点之间的weight权重值用来表示两个基因之间的关联性。

数据的过滤与筛选

df_edge <- df_edge %>% arrange(-weight) %>% head(100)
# 删除自身和自身相关位点
df_edge <- df_edge[which(df_edge$fromNode != df_edge$toNode),]
networkData <- df_edge[1:2]
simpleNetwork(networkData,linkDistance = 100)

由于基因数量比较多,因此这里先按照权重值进行排序,然后选取前100行,这一步可以根据你的需要设置,也可以按照制定阈值过滤,然后绘制一张简单版本的网络图:

alt

格式转换与重新编码

alt

由于我们WGCNA输出的文件中节点都是通过基因ID来表示,但是绘图时无法直接识别节点ID,需要修改为数字0、1、2...因此,需要对节点进行重新修改。

# 转换格式
df_edge_net <- df_edge[,c(1,2,3)] %>% as.data.frame()
df_node_net <- df_node[,c(1,3)] %>% as.data.frame()

colnames(df_edge_net) <- c("source" ,"target" ,"value")
colnames(df_node_net) <- c("name","group")

# 合并第一列和第二列,并取并集
merged_elements <- union_all(df_edge_net$source,df_edge_net$target) %>% unique()

# 对合并后的元素进行编号
element_numbers <- seq_along(merged_elements)

# 创建一个新的数据框,包含合并的元素和对应的编号
result_df <- data.frame(merged_elements, element_numbers)
result_df$element_numbers <- result_df$element_numbers-1

# 使用映射表更新原始数据框的第一列和第二列
df_edge_net$source <- result_df$element_numbers[match(df_edge_net$source, result_df$merged_elements)]
df_edge_net$target <- result_df$element_numbers[match(df_edge_net$target, result_df$merged_elements)]

经过这一步处理后能够得到两个新的数据框,这就是绘制动态网络图的关键输入数据。在此基础上,我们还可以添加一些额外的信息,比如按照不同的分组将节点赋予不同的颜色,或者根据根据基因之间的正调控和负调控设置连接线的颜色。

# 生成模拟数据
df_edge_net$value <- c(runif(nrow(df_edge_net)/2,0,1),runif(nrow(df_edge_net)/2,0,5))
df_edge_net$color <- c(rep("red",50),rep("green",50))

value值表示节点之间连线的权重大小,可以用来展示两个基因之间的关联程度,该值越大线越粗,关联性越强。

color值可以用来设置连线的颜色,比如设置正调控为红色,负调控为绿色。

除了设置节点与节点之间边的关系,还能设置单个节点的参数,比如通过下面的代码设置节点的大小用来表示基因的表达量,表达量高的基因节点直径越大。还可以用过Type将节点进行分组,比如转录因子为A组,目标基因为B组等等。

df_node_net <- result_df
df_node_net$size <- runif(nrow(df_node_net),0,20)
df_node_net$type <- rep(c("A","B","C"),10000)[1:nrow(df_node_net)]
colnames(df_node_net) <- c("name""group""size","type")

绘制动态网络图

接下来通过调用forceNetwork绘制网络图,将刚刚的两个数据作为输入文件,设置如下参数即可获得结果图。

p <- forceNetwork(Links = df_edge_net, 
             Nodes = df_node_net, 
             Source = "source"
             Target = "target",
             linkColour=df_edge_net$color,
             arrows=TRUE,
             legend=TRUE,
             Value = "value",
             NodeID = "name",
             Group = "type"
             bounded=F,
             opacityNoHover = 0.5,
             linkDistance = 100,
             charge=-500,
             Nodesize='size',
             # radiusCalculation = "Math.sqrt(d.nodesize,2)*5",
             # linkWidth = JS("function(d) { return Math.sqrt(d.value)-4;}"),
             # linkDistance=JS("function(d){return 1/(d.value)*100 }"),
             opacity = 0.9,
             zoom = T,
             fontFamily = "Aril",
             fontSize = 12) 
p
alt

这张图是通过JS实现的,因此支持动态交互,比如将鼠标放在节点上会显示节点名称(基因ID),还可以拖动节点查看与之关联节点。

alt

如果想要将其保存下来,最好的方法是html格式,这样仍具有动态交互属性。

saveNetwork(network = p,file = 'Net.html')

今天分享的内容就到这里,感谢您的阅读,如需本文代码和数据,请把收件邮箱发在评论区,欢迎点赞转发分享。

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/2063.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MQTT服务器EMQX的安装和使用(Windows)

一、下载地址&#xff1a; 下载 EMQX 二、安装环境&#xff1a; Windows Server2016 16G 500G 三、启动服务&#xff1a; 下载文件解压后放入以下目录&#xff08;注意&#xff0c;目录名一定是英文&#xff0c;否则会造成启动不成功&#xff01;&#xff09;&#xff1a…

mybatis与mybatisplus

mybatis 基本使用 整合springboot 1.添加依赖 2.添加配置 spring:# 数据源相关配置datasource:username: rootpassword: 123456driver-class-name: com.mysql.cj.jdbc.Driver#时区必须配置否则报错,注意数据库名切换为自己的数据库名称url: jdbc:mysql://127.0.0.1/ithei…

论文略读:OpenGraph: Towards Open Graph Foundation Models

arxiv 2023 1 intro Graph大模型希望OpenGraph能够捕捉通用的拓扑结构模式&#xff0c;对测试数据进行Zero-shot预测 仅通过前向传播过程&#xff0c;就可以对测试图数据进行高效的特征提取和准确预测模型的训练过程在完全不同的图数据上进行&#xff0c;在训练阶段不接触测试…

【2024年5月备考新增】】软考极限冲刺 《项目质量管理1》

1 知识点 1.1 质量成本 一致性成本 项目花费资金规避失败 预防成本:(打造某种高质量产品) 培训文件过程设备完成时间评估成本:(评估成本) 测试破坏性试验损失检查非一致性成本 项目前后花费的资金(由于失败) 内部失败成本:(项目中发现的失败) 返工报废外部失败成本:…

windows安装nc命令的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

(mac)Prometheus监控之Node_exporter(CPU、内存、磁盘、网络等)

完整步骤 1.启动 Prometheus 普罗米修斯 prometheus --config.file/usr/local/etc/prometheus.yml 浏览器访问 http://localhost:9090/targets 2.启动Node_exporter node_exporter 访问&#xff1a;http://localhost:9100 3.启动grafana brew services start grafana 访问…

力扣146. LRU 缓存

Problem: 146. LRU 缓存 文章目录 题目描述思路复杂度Code 题目描述 思路 主要说明大致思路&#xff0c;具体实现看代码。 1.为了实现题目中的O(1)时间复杂度的get与put方法&#xff0c;我们利用哈希表和双链表的结合&#xff0c;将key作为键&#xff0c;对应的链表的节点作为…

2024年前端技术发展趋势

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

如何用idm下载迅雷文件 idm怎么安装到浏览器 idm怎么设置中文

如果不是vip用户使用迅雷下载数据文件&#xff0c;其下载速度是很慢的&#xff0c;有的时候还会被限速&#xff0c;所以很多小伙们就开始使用idm下载迅雷文件&#xff0c;idm这款软件最大的优势就是下载速度快&#xff0c;还有就是具备网页捕获功能&#xff0c;能够下载网页上的…

ESD+显示模组

ESD测试是指对消费电子设备进行静电放电测试&#xff0c;通常用于检查设备是否具有防静电能力&#xff0c;以及在正常使用过程中是否容易受到静电干扰&#xff0c;通过进行ESD测试&#xff0c;可以评估设备的抗静电能力&#xff0c;并采取相应的措施以提高设备的耐静电性能。 E…

小米汽车超级工厂智能物流

导语 大家好&#xff0c;我是智能仓储物流技术研习社的社长&#xff0c;老K。专注分享智能仓储物流技术、智能制造等内容。 小米汽车超级工厂以其先进的智能物流系统&#xff0c;标志着汽车制造业在智能化和自动化方面迈出了重要一步。该工厂采用物联网(IoT)技术&#xff0c;实…

架构师系列-MYSQL调优(五)- JOIN、in及exists优化

JOIN算法原理 JOIN 是 MySQL 用来进行联表操作的&#xff0c;用来匹配两个表的数据&#xff0c;筛选并合并出符合我们要求的结果集。JOIN 操作有多种方式&#xff0c;取决于最终数据的合并效果。常用连接方式的有以下几种: 驱动表的定义 什么是驱动表 ? 多表关联查询时,第一…

Bert语言大模型基础

一、Bert整体模型架构 基础架构是transformer的encoder部分&#xff0c;bert使用多个encoder堆叠在一起。 主要分为三个部分&#xff1a;1、输入部分 2、注意力机制 3、前馈神经网络 bertbase使用12层encoder堆叠在一起&#xff0c;6个encoder堆叠在一起组成编码端&#xf…

Spring Boot中判断轨迹数据是否经过设置的打卡点,且在PGSQL中把点拼接成线,判断某个点是否在线上或在线的50米范围内

问题描述 轨迹数据判断是否经过打卡点&#xff0c;轨迹数据太多&#xff0c;循环判断的话非常消耗内存。解决办法只需要把所有轨迹数据点拼成了一条线&#xff0c;然后只需要循环打卡点即可&#xff0c;打卡点不多&#xff0c;一般不会超过100个&#xff0c;如果多的话&#x…

R可视化:桑基图展示数据层流动

介绍 以桑基图形式展示数据分布情况 加载R包 knitr::opts_chunk$set(message = FALSE, warning = FALSE) library(tidyverse) library(ggalluvial)# rm(list = ls()) options(stringsAsFactors = F) options(future.globals.maxSize = 10000 * 1024^2) 导入数据 metadata…

【计算机毕业设计】大学校园图书角管理系统——后附源码

&#x1f389;**欢迎来到我的技术世界&#xff01;**&#x1f389; &#x1f4d8; 博主小档案&#xff1a; 一名来自世界500强的资深程序媛&#xff0c;毕业于国内知名985高校。 &#x1f527; 技术专长&#xff1a; 在深度学习任务中展现出卓越的能力&#xff0c;包括但不限于…

【Flutter】One or more plugins require a higher Android SDK version.

问题描述 项目里多个组件需要更高版本的Android SDK One or more plugins require a higher Android SDK version.解决方案&#xff1a; 报错提示requires Android SDK version 34 按提示修改android项目app里build.gradle的compileSdkVersion 为34 android {compileSdkVe…

node.js-包

包的概念 包&#xff1a;将模块&#xff0c;代码&#xff0c;其他资料聚合成的一个文件夹 包分类&#xff1a; 1.项目包&#xff1a;主要用于编写项目和业务逻辑的文件夹 2.软件包&#xff1a;封装工具和方法供开发者使用&#xff08;一般使用npm管理&#xff09; 1&#…

mysql的DDL语言和DML语言

DDL语言&#xff1a; 操作数据库&#xff0c;表等&#xff08;创建&#xff0c;删除&#xff0c;修改&#xff09;&#xff1b; 操作数据库 1&#xff1a;查询 show databases 2:创建 创建数据库 create database 数据库名称 创建数据库&#xff0c;如果不存在就创建 crea…

MySQL—一条查询SQL语句的完整执行流程

MySQL—一条查询SQL语句的完整执行流程 表结构和数据如下&#xff1a; 我们分析的sql语句如下&#xff1a; select tb_id,tb_name,tb_address from tb_user where tb_id 66;大体来说&#xff0c;MySQL可以分为Server层和存储引擎层两部分: Server层 包括:连接器、查询缓存、…