JAVA基础之垃圾收集器

一 JVM垃圾收集

分代收集思想

当前虚拟机的垃圾收集一般采用分代收集算法,这种算法本身没有创新性,只是根据对象存活周期的不同将内存分为几块。一般将java堆内存分为新生代和老年代,这样我们就可以根据不同年龄到的特点选择不同的垃圾收集算法。

比如:

  • 新生代中,每次收集都会有大量的对象(接近99%)被回收,所以可以选择复制算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。
  • 老年代中,对象的存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择标记清除标记整理算法进行垃圾收集。注意标记清除或标记整理算法会比复制算法慢10倍以上;

二 常见的垃圾收集算法

标记清除算法

该算法分为标记和清除两个阶段:

  • 标记阶段:标记存活的对象(一般选择这种);
  • 回收阶段:统一回收所有未被标记的对象;

这是最基础的收集算法,比较简单,但是会带来两个明显的问题:

  1. 效率问题:如果标记的垃圾对象太多,效率会很低;
  2. 空间问题:标记清除后会产生大量不连续的碎片空间;

标记复制算法

为了解决标记清除算法效率问题,复制算法出现了,它将内存分为大小相同的两块,每次使用其中一块,当其中一块被使用完后,将还存活的对象复制到另一块空间,然后把已经使用的空间一次性清空。其实是用空间换时间的思想;

标记整理算法

根据老年代的特点出的一种标记算法,标记过程与标记清除算法一样,但是后续步骤不是直接对可回收对象进行回收,而且让所有存活对象向一端移动,然后清理掉分界线以外的内存;

三 垃圾收集器

如果说垃圾收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。

3.1 Serial收集器

Serial(串行)收集器是最基础、历史最悠久的垃圾收集器。是一款单线程收集器。它的单线程意味着他只会使用一条垃圾收集线程完成垃圾收集工作,更重要的是它在垃圾收集工作的时候必须暂停其他所有其他工作线程(Stop The Word),直到它收集完成;

  • 缺点:Stop The Word带来了不好用户体验;
  • 优点:简单而高效(与其他收集器的单线程相比),Serial收集器没有线程交互的开销,自然可以获得很高的单线程收集效率;

Serial Old收集器时Serial收集器的老年代版本,它同样是一个单线程收集器。它主要有两个用途:

  • 在JDK1.5及以前的版本中与Parallel Scavenge收集器搭配使用;
  • 作为CMS收集器的后备方案;

开启参数:-XX:UseSerialGC -XX:UseSerialOldGC

3.2 Parallel Scavenge收集器

Parallel Scavenge收集器其实是Serial收集器的多线程版本,除了使用多线程进行垃圾收集外,其他行为(控制参数、收集参数、回收策略)和Serial收集器类似。默认的收集线程数等于CPU核数,当然也可以通过参数(-XX:ParallelGCThreads)指定收集线程数,但是一般不推荐修改;

Parallel Scavenge收集器关注点是吞吐量(高效率的利用CPU)。CMS等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。所谓吞吐量=CPU用于运行用户代码的时间/CPU总消耗时间;Parallel Scavenge收集器提供了很多参数功用户找到最合适的停顿时间或最大吞吐量,如果对于收集器不是太了解,建议保持默认值;

Parallel Old收集器时Parallel Scagvenge收集器的老年代版本;使用多线程和标记整理算法。在注重吞吐量以及CPU资源的场景,都可以优先考虑ParallelScavenge收集器和Parallel Old收集器(JDK8默认的新生代和老年代收集器);

新生代采用标记复制算法,老年代使用标记整理算法;

-XX:+UseParallelGC(年轻代)   -XX:+UseParallelOldGC(老年代)

3.3 ParNew收集器

ParNew收集器跟Parallel收集器很类似,主要的区别在于它可以和CMS收集器配合使用。

ParNew收集器许多运行在Server模式下的虚拟机的首要选择,除了Serial收集器外,只有它能与CMS收集器配合工作;

新生代采用复制算法;

-XX:+UseParNewGC

3.5 CMS收集器

 
CMS收集器(Concurrent Mark Sweep)是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用,是HotSpot虚拟机第一款真正意义上的并发收集器,第一次实现了让垃圾收集器线程与用户线程同时工作。

CMS收集器时一种标记清除算法实现的,它的执行过程相对于前面集中垃圾收集器来说更加复杂一些。整个过程分为四个步骤:

  1. 初始标记:暂停所有的其他线程(STW),并记录下GcRoots直接能引用的对象,此阶段速度很快;
  2. 并发标记:从GCRoots直接关联的对象开始遍历整个对象图的过程,这个过程耗时较长,但是不需要暂停用户线程,用户线程与垃圾线程可以并发运行。因为用户线程继续运行,可能会导致已经标记过的对象状态发生了改变;
  3. 重新标记:此阶段是为了修正并发标记期间因为用户线程继续运行而导致标记产生变动的那一部分对象的标记记录(主要是处理漏标问题);这个阶段停顿时间一般会比初始标记阶段的时间稍长,远比并发标记阶段时间短。其中主要用到三色标记里的增量更新算法做重新标记。
  4. 并发清理:开启用户线程,同时GC线程开始对未标记的区域做清扫。这个阶段如果有新增对象会被标记为黑色不做任何处理(见下面三色标记算法详解)。
  5. 并发重置:重置本次GC过程中的标记数据。

CMS收集器是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面几个明显的缺点:

  1. 对CPU资源敏感,会和应用程序抢资源;
  2. 无法处理浮动垃圾(在并发标记和并发清理阶段会产生新垃圾,这种垃圾只能等到下次GC时再清理)。
  3. 使用的标记清除算法会导致收集结束时产生大量空间碎片,当然可以通过参数-XX:UseCMSCompactAtFullCollection让JVM在执行完标记清除后再做整理;
  4. 执行过程不确定性,会存在上一次垃圾回收还没执行完成,然后新的垃圾回收又被触发的情况,特别是在并发标记和并发清理阶段出现,一边回收垃圾,系统一边运行,也许没有回收完成就会触发FullGC,也就是concurrent mode failure,此时会进入stop the word,使用serial old垃圾收集器来回收垃圾;

3.5.1 CMS的相关核心参数

  1. -XX:UseConcMarkSweepGC 使用CMS垃圾收集器
  2. -XX:ConcGCThreads 并发的GC线程数
  3. -XX:UseCMSCompactAtFullCollection FullGC之后做压缩整理(减少碎片)
  4. -XX:CMSFullGCsBeforeCompaction 多少次FullGC之后压缩一次,默认时0,代表每次FullGC后会压缩一次
  5. -XX:CMSInitiatingOccupancyFraction 当老年代使用率达到该比例时触发FullGC(默认92,单位百分比)
  6. -XX:CMSInitiatingOccupancyOnly 只使用设定的回收阈值(-XX:CMSInitiatingOccupancyFraction设置的值),如果不指定,JVM仅在第一次使用设定值,后续则会自动调整
  7. -XX:+CMSScavengeBeforeRemark 在CMS GC前启动一次minor gc,降低CMS GC标记阶段时的开销,一般CMS的GC耗时80%的时间都在标记阶段;
  8. -XX:+CMSParallelInitialMarkEnabled 在初始标记的时候多线程执行,缩短STW
  9. -XX:+CMSParallelRemarkEnabled 在重新标记的时候多线程执行,缩短STW

四 垃圾收集底层算法

4.1 三色标记

在并发标记的过程中,因为标记期间应用线程还在继续运行,对象间的引用可能会发生变化,多标和漏标的情况就可以发生。漏标的问题主要引入了三色标记算法来解决。

三色标记算法是把Gc roots可达性分析便利对象中遇到的对象,按照是否访问过这个条件标记成以下三种颜色:

  • 黑色:表示对象已经被垃圾收集器访问过,且这个对象的所有引用对象都应扫描过,它是安全存活的,如果有其他对象引用指向了黑色对象,无需重新扫描。黑色对象不可能直接(不经过灰色对象)指向某个白色对象。
  • 灰色:表示对象已经被垃圾收集器访问过,但这个对象至少存在一个引用还没被扫描过;
  • 白色:表示对象尚未被垃圾收集器访问过。显然可达性分析刚刚开始阶段,所有的对象都是白色的,若在分析结束阶段,仍然是白色的对象,即代表是不可达;

源码实例:

public class ThreeColorRemark {public static void main(String[] args) {A a = new A();//开始做并发标记D d = a.b.d;   // 1.读a.b.d = null;  // 2.写a.d = d;       // 3.写}
}class A {B b = new B();D d = null;
}class B {C c = new C();D d = new D();
}class C {
}class D {
}

4.2 存在的问题以及解决方案

4.2.1 多标-浮动垃圾

在并发标记过程中,如果由于方法运行结束导致部分局部变量(gcroot)被销毁,这个gcroot引用的对象之前又被扫描过(被标记为非垃圾对象),那么本轮GC不会收回这部分内存。这部分本应该回收但是没有回收到的内存,被称之为浮动垃圾。浮动垃圾不会影响垃圾回收的准确性,只需要等到下一轮垃圾回收才可以被清除;

4.2.2 漏标-读写屏障

漏标会导致被引用的对象被当成垃圾误删除,这是严重的bug,必须要解决,有两种解决方案:增量更新和原始快照;

  • 增量更新:当黑色对象插入新的指向白色对象的引用关系时,就将这个新插入的引用就下来,等并发扫描结束之后,再以这些记录的引用关系中的黑色对象为根,重新扫描一次,可以简化理解为,黑色对象一旦插入了指向白色对象的引用之后,就变回灰色对象了
  • 原始快照:当灰色对象要删除指向白色对象的引用关系时,就将这个要删除的引用记录下来,在并发扫描结束之后,再将这些记录的引用关系中的灰色对象为根,重新扫描一次,这样就能扫描到白色的对象,将白色对象直接标记为黑色(目的是让这种对象在本轮gc清理中能存活下来,待下一轮gc的时候重新扫描,这个对象可能是浮动垃圾);

无论是对引用关系记录的插入还是删除,虚拟机的记录操作都是通过写屏障实现的;

4.2.2.1 写屏障

给某个对象的成员变量赋值时,其底层代码大概长这样:

/**
* @param field 某对象的成员变量,如 a.b.d 
* @param new_value 新值,如 null
*/
void oop_field_store(oop* field, oop new_value) { *field = new_value; // 赋值操作
} 

所谓的写屏障,其实就是指在赋值操作前后,加入一些处理(可以参考AOP的概念):

void oop_field_store(oop* field, oop new_value) {  pre_write_barrier(field);          // 写屏障-写前操作*field = new_value; post_write_barrier(field, value);  // 写屏障-写后操作
}
写屏障实现SATB

当对象B的成员变量的引用发生变化时,比如引用消失(a.b.d = null),我们可以利用写屏障,将B原来成员变量的引用对象D记录下来:

void pre_write_barrier(oop* field) {oop old_value = *field;    // 获取旧值remark_set.add(old_value); // 记录原来的引用对象
}

 

写屏障实现增量更新

当对象A的成员变量的引用发生变化时,比如新增引用(a.d = d),我们可以利用写屏障,将A新的成员变量引用对象D记录下来:

void post_write_barrier(oop* field, oop new_value) {  remark_set.add(new_value);  // 记录新引用的对象
}
读屏障
oop oop_field_load(oop* field) {pre_load_barrier(field); // 读屏障-读取前操作return *field;
}

读屏障是直接针对第一步:D d = a.b.d,当读取成员变量时,一律记录下来: 

void pre_load_barrier(oop* field) {  oop old_value = *field;remark_set.add(old_value); // 记录读取到的对象
}

为什么G1使用SATB,CMS用增量更新解决三色标记的问题?

可能是:STAB相对于增量更新效率会高(当然STAB可能造成更多的浮动垃圾),因为不需要再重新标记阶段再次深度扫描被删除的引用对象,而CMS对增量引用的根对象会做深度扫描,G1因为很多对象都位于不同的reigon,CMS就一块老年代区域,重新深度扫描对象的话G1的代价会比CMS高,所以G1选择STAB不深度扫描对象,只是简单标记,等到下一轮GC再深度扫描;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/1931.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学之思考试系统环境启动QA

学之思考试系统环境启动Q&A 目录 学之思考试系统环境启动Q&A后台代码启动失败:前台代码启动失败常见解决方式参考资料后台代码启动失败: 后端代码启动不成功,不能够自动导入maven,配置依赖; 使用idea打开到:\xzs-master\xzs-mysql-master\source\xzs这个路径下;…

ruoyi-cloud-plus添加一个不要认证的公开新页面

文章目录 一、前端1. 组件创建2. src/router/index.ts3. src/permission.ts 二、后端1. 设计思想2. ruoyi-gateway.yml3. 开发Controller 版本RuoYiCloudPlusv2.1.2plus-uiVue3 ts 以新增一个公开的课程搜索页面为例。 一、前端 1. 组件创建 在view目录下创建一个页面的vue…

Java面试题笔记(持续更新)

目录 Java基础 java中的Math.round(-1.5)等于多少? JDK和JRE的区别? 抽象类能被final修饰吗? 如何决定使用TreeMap还是HashMap? 迭代器Iterator是什么? Queue中的poll和remove有什么区别? 为什么要使用克隆&a…

web前端框架设计第五课-计算属性与监听属性

web前端框架设计第五课-计算属性与监听属性 一.预习笔记 1.计算属性 computed split():拆分 reverse():倒序 join():拼接 计算属性与方法,两者效果一致,但是computed 是基于它的依赖缓存,只有相关依赖发生改变时才会重新取值。而使用 met…

Nodejs安装与配置--基于Linux系统--RedHat7.9

nodejs安装从未这么简单 1、nodejs版本设置? curl -fsSL https://rpm.nodesource.com/setup_16.x | sudo bash - 其他版本如下: * https://rpm.nodesource.com/setup_16.x — Node.js 16 "Gallium" (deprecated) * https://rpm.nodesource.co…

2024 抖音欢笑中国年(五):Wasm、WebGL 在互动技术中的创新应用

前言 随着 Web 前端技术的不断发展,越来越多的新兴技术方案被引入到 Web 开发中,其中 Wasm 和 WebGL 作为前端领域的两大利器,为开发者带来了更多的可能性。 本文将结合2024 年抖音欢笑中国年的部分项目,重点介绍如何利用 Wasm 和…

javaScript3

javaScript 一.对象1.概念2.创建对象的三种方法(1).字面量创建(利用{})(2)变量、属性、函数、方法的区别(3).new Object创建(4).构造函数 3.new关键字的执行过程4.遍历对象(for..in) 二.内置对象 一.对象 1.概念 一组无序的相关属性和方法的…

前端开发攻略---Vue项目(Vue2和Vue3)引入高德地图,超详细,超简单,保姆级教程。

1、图片演示 2、引入前的准备 1、前往 高德开放平台 进行账号注册。如果手机上有高德地图App并且已经登录过,则可以直接选择登录 2、注册/登录完成后来到应用管理-->我的应用 3、点击创建新应用 4、填写好应用名称和选择应用类型 5、填写好后点击添加Key 6、填写…

上市公司-企业数据要素利用水平数据集及参考文献(2010-2022年)

01、数据介绍 企业数据要素利用水平是指企业在其生产经营活动中,对数据的收集、处理、分析和应用的能力及效果。这种利用水平的高低直接反映了企业在数字化时代中的竞争力和创新能力。 本数据参考《中央财经大学学报》史青春(2023)老师的研…

spi 收发流程

patch日期 收发流程的重大修改,来源于2012年的如下补丁 内核提交收发流程的patch spi: create a message queueing infrastructure - kernel/git/stable/linux.git - Linux kernel stable tree 源代码路径及功能 源码作用\drivers\spi\spi.cspi 通用接口&#x…

钻刀无忌,过孔莫愁

高速先生成员--姜杰 钻刀是冷的,单板是冷的,眼见着过孔阻抗居高不下,雷豹的心也越来越冷…… 雷豹最近在研究过孔,少不了先学习相关的理论:过孔作为信号路径上一个重要的阻抗突变点,相对于传输线的特征阻抗…

C语言——小知识和小细节15

一、二维数组与指针 例一 下面的程序运行结果是什么&#xff1a; #include <stdio.h>int main() {int arr[3][2] { (1,2),(3,4),(5,6) };int* p arr[0];printf("%d\n", *p);return 0; } 运行结果&#xff1a; 实际上这里有个小细节&#xff0c;就是二维数…

教师编制可以跨市调动吗

在教育的广阔天地中&#xff0c;我们常常面临各种职业发展的选择。作为一名教师&#xff0c;是否能够实现跨市调动&#xff0c;这不仅是一个职业发展的问题&#xff0c;更关系到个人生活和职业规划的诸多方面。今天&#xff0c;我们就来探讨一下&#xff0c;拥有编制身份的教师…

电磁兼容(EMC):静电放电(ESD)抗扰度试验深度解读(五)

静电放电过程是一个很复杂的过程&#xff0c;下面比对人体持金属对产品放电和静电发生器对产品进行接触放电过程的详细分解说明。 1. 人持金属对产品放电过程 人对产品所产生的静电放电&#xff0c;会发生下面一系列的事件&#xff1a; 1&#xff09;当手持金属片接近产品的…

算法题解记录20+++

题目描述&#xff1a; 难度&#xff1a;简单 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来…

华为路由器基于接口限速

一、背景 ISP与企业内网通过华为路由器接入Internet时,当大量流量进入路由器时,可能会因为带宽不足产生拥塞,导致丢包,严重影响用户上网体验。对于此需要对网络流量进行限制,其方式通常有防火墙带宽策略、路由器基于接口限速等。 二、华为路由器基于接口限速方式 在路由…

【看不懂命令行、.yaml?】Hydra 库极速入门

Hydra 是一个开源的 Python 框架&#xff0c;可以简化研究和其他复杂应用程序的开发。其核心功能是通过组合动态创建层次化的配置&#xff0c;并可以通过配置文件和命令行进行覆盖。Hydra 的名字来源于它能够运行多个类似的作业 - 就像一个多头的水怪一样。 主要特性: 从多个…

T31开发笔记: 移动侦测

若该文为原创文章&#xff0c;转载请注明原文出处。 最近在测试创安源IPC时发现摄像头的视频流有移动侦测功能 &#xff0c;拆解后发现使用的是T31,刚好手头上有淘宝买50多点的T31摄像头&#xff0c;就自己现在了个简易DEMO测试一下。 一、硬件和开发环境 1、硬件&#xff1a;…

C语言 分支控制语句之 if

然后 我们来说 流程控制语句之 if 选择控制结构 是通过 分支语句来实现的 其中 包括 单分支选择语句通过 (if) 来实现 双分支语句通过 (if) 和 (else) 实现 多分支语句通过 (if) (else if) (else) 实现 对于单分支来讲 它控制的语句就是 要嘛做 要嘛不做 好比如 放假了 你是…

【极速前进】20240422:预训练RHO-1、合成数据CodecLM、网页到HTML数据集、MLLM消融实验MM1、Branch-Train-Mix

一、RHO-1&#xff1a;不是所有的token都是必须的 论文地址&#xff1a;https://arxiv.org/pdf/2404.07965.pdf 1. 不是所有token均相等&#xff1a;token损失值的训练动态。 ​ 使用来自OpenWebMath的15B token来持续预训练Tinyllama-1B&#xff0c;每1B token保存一个che…