初始C++

1. C++关键字(C++98)

C++总计63个关键字,

C语言32个关键字

ps:下面我们只是看一下C++有多少关键字,不对关键字进行具体的讲解。后面我们学到以后再 细讲。

2. 命名空间

在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存 在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化, 以避免命名冲突或名字污染,namespace关键字的出现就是针对这种问题的。

#include <stdio.h>
#include <stdlib.h>
int rand = 10;
// C语言没办法解决类似这样的命名冲突问题,所以C++提出了namespace来解决
int main()
{printf("%d\n", rand);
return 0;
}
// 编译后后报错:error C2365: “rand”: 重定义;以前的定义是“函数”

2.1 命名空间定义

定义命名空间,需要使用到namespace关键字,后面跟命名空间的名字,然后接一对{}即可,{} 中即为命名空间的成员。

// bit是命名空间的名字,一般开发中是用项目名字做命名空间名。
// 我们上课用的是bit,大家下去以后自己练习用自己名字缩写即可,如张三:zs
// 1. 正常的命名空间定义
namespace bit
{// 命名空间中可以定义变量/函数/类型int rand = 10;int Add(int left, int right){return left + right;}
struct Node{struct Node* next;int val;};
}
//2. 命名空间可以嵌套
// test.cpp
namespace N1
{
int a;
int b;
int Add(int left, int right){return left + right;}
namespace N2{int c;int d;int Sub(int left, int right){return left - right;}}
}//3. 同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中。
// ps:一个工程中的test.h和上面test.cpp中两个N1会被合并成一个
// test.h
namespace N1
{
int Mul(int left, int right){return left * right;}
}

注意:默认是不会去命名空间里面搜索的,所以要使用前面要加using namespace xxxx

或者使用某个std东西使指定作用域

1.不加using namespace std那么第一句就编不过去

但是其实一把展开作用域std也不是很好

1.直接展开会有风险,我们定义如果跟库重名,就报错了

2.建议项目里面不要去展开

3.项目推荐指定访问

4.常用的建议展开

一个命名空间就定义了一个新的作用域,命名空间中的所有内容都局限于该命名空间中

命名空间的使用有三种方式:

1.加命名空间名称及作用域限定符

int main()
{printf("%d\n", N::a);return 0;    
}

 2.使用using将命名空间中某个成员引入

using N::b;
int main()
{printf("%d\n", N::a);printf("%d\n", b);return 0;    
}

3.使用using namespace 命名空间名称 引入

using namespce N;
int main()
{printf("%d\n", N::a);printf("%d\n", b);Add(10, 20);return 0;    
}

3. C++输入&输出

#include<iostream>
// std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中
using namespace std;
int main()
{
cout<<"Hello world!!!"<<endl;
return 0;
}
#include <iostream>
using namespace std;
int main()
{int a;double b;char c;// 可以自动识别变量的类型cin>>a;cin>>b>>c;cout<<a<<endl;cout<<b<<" "<<c<<endl;return 0;
}

说明:

1. 使用cout标准输出对象(控制台)和cin标准输入对象(键盘)时,必须包含< iostream >头文件 以及按命名空间使用方法使用std。

2. cout和cin是全局的流对象,endl是特殊的C++符号,表示换行输出,他们都包含在包含< iostream >头文件中。

3. >>是流提取运算符。<<是流插入运算符

4. 使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动控制格式。 C++的输入输出可以自动识别变量类型。

5. 实际上cout和cin分别是ostream和istream类型的对象,>>和<<也涉及运算符重载等知识, 这些知识我们我们后续才会学习,所以我们这里只是简单学习他们的使用。后面我们还有有 一个章节更深入的学习IO流用法及原理。

注意:早期标准库将所有功能在全局域中实现,声明在.h后缀的头文件中,使用时只需包含对应 头文件即可,后来将其实现在std命名空间下,为了和C头文件区分,也为了正确使用命名空间, 规定C++头文件不带.h;旧编译器(vc 6.0)中还支持格式,后续编译器已不支持,因 此推荐使用+std的方式。  

控制精度其实可以继续使用C的printf比较好控制。 而且C的printf和scanf函数都比cin和cout快

 std命名空间的使用惯例:

std是C++标准库的命名空间,如何展开std使用更合理呢?

1. 在日常练习中,建议直接using namespace std即可,这样就很方便。

2. using namespace std展开,标准库就全部暴露出来了,如果我们定义跟库重名的类型/对 象/函数,就存在冲突问题。该问题在日常练习中很少出现,但是项目开发中代码较多、规模 大,就很容易出现。所以建议在项目开发中使用,像std::cout这样使用时指定命名空间 + using std::cout展开常用的库对象/类型等方式。

4. 缺省参数 (也叫默认参数)

4.1 缺省参数概念

缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时,如果没有指定实 参则采用该形参的缺省值,否则使用指定的实参。

void Func(int a = 0)
{cout<<a<<endl;
}
int main()
{Func();     // 没有传参时,使用参数的默认值Func(10);   // 传参时,使用指定的实参
return 0;
}

4.2 缺省参数分类

全缺省参数

void Func(int a = 10, int b = 20, int c = 30){cout<<"a = "<<a<<endl;cout<<"b = "<<b<<endl;cout<<"c = "<<c<<endl;}

半缺省参数

void Func(int a, int b = 10, int c = 20){cout<<"a = "<<a<<endl;cout<<"b = "<<b<<endl;cout<<"c = "<<c<<endl;}

注意:

1. 半缺省参数必须从右往左依次来给出,不能间隔着给

传参时候从左往右给(区别于函数栈帧中传参压栈是从右往左的)

2. 缺省参数不能在函数声明和定义中同时出现

//a.hvoid Func(int a = 10);// a.cppvoid Func(int a = 20){}// 注意:如果生命与定义位置同时出现,恰巧两个位置提供的值不同,那编译器就无法确定到底该
用那个缺省值。

3. 缺省值必须是常量或者全局变量

4. C语言不支持(编译器不支持)

5.缺省函数(声明给,定义不给)

5. 函数重载

自然语言中,一个词可以有多重含义,人们可以通过上下文来判断该词真实的含义,即该词被重 载了。 比如:以前有一个笑话,国有两个体育项目大家根本不用看,也不用担心。一个是乒乓球,一个 是男足。前者是“谁也赢不了!”,后者是“谁也赢不了!”

5.1 函数重载概念

函数重载:是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这 些同名函数的形参列表(参数个数 或 类型 或 类型顺序)不同,常用来处理实现功能类似数据类型 不同的问题。

#include<iostream>
using namespace std;
// 1、参数类型不同
int Add(int left, int right)
{cout << "int Add(int left, int right)" << endl;return left + right;
}
double Add(double left, double right)
{cout << "double Add(double left, double right)" << endl;return left + right;
}
// 2、参数个数不同
void f()
{cout << "f()" << endl;
}
void f(int a)
{cout << "f(int a)" << endl;
}
// 3、参数类型顺序不同
void f(int a, char b)
{cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{cout << "f(char b, int a)" << endl;
}
int main()
{Add(10, 20);Add(10.1, 20.2);f();f(10);f(10, 'a');f('a', 10);return 0;
}

单纯的返回值不同,不构成重载(也就编译不通过)

不知道FUNC调哪个函数,(即使改了函数名修饰规则也不知道调谁,因为你使用的时候你是函数名());

还有个别的例子:(是重载但是调用不明确)

内部细节: 

假如stack.h里有如下声明

void StackInit(struct Stack* pst, int defaultCapacity = 4);

void StackPush(struct Stack* pst, int x);

void StackPush(struct Stack* pst, double x);

stack.c里面有实现

test.c调用

过程:

编译的时候是拿不到地址的,因为在Stack.i中只是根据定义处理的 

符号表是什么:

根据符号表来兑现承诺

 linux下看汇编:

C中我们直接根据函数名来定义的函数,所以不允许同名函数,编译都不会通过,也就不支持重载。

但是C++中有不同的函数修饰规则,每个函数都根据自己的函数修饰规则来找到自己这个函数的地址,在linux中(在上图中)有个前缀是Z,然后是函数名长度4或者9 ,原函数名跟上,最后是类型名字的缩写,根据这个修饰规则,即使名字一样,也可以找到不同的地址,也就构成了重载

windows下:

 C/C++调用规定

6. 引用

6.1 引用概念

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空 间,它和它引用的变量共用同一块内存空间。 比如:李逵,在家称为"铁牛",江湖上人称"黑旋风"。 

类型& 引用变量名(对象名) = 引用实体;

void TestRef()
{int a = 10;int& ra = a;//<====定义引用类型printf("%p\n", &a);printf("%p\n", &ra);
}

 注意:引用类型必须和引用实体是同种类型的

6.2 引用特性

1. 引用在定义时必须初始化

2. 一个变量可以有多个引用

3. 引用一旦引用一个实体,再不能引用其他实体 

void TestRef()
{int a = 10;// int& ra;   // 该条语句编译时会出错int& ra = a;int& rra = a;printf("%p %p %p\n", &a, &ra, &rra);  
}

 6.3 常引用

void TestConstRef()
{const int a = 10;//int& ra = a;   // 该语句编译时会出错,a为常量const int& ra = a;// int& b = 10; // 该语句编译时会出错,b为常量const int& b = 10;double d = 12.34;//int& rd = d; // 该语句编译时会出错,类型不同const int& rd = d;
}

这个可以,权限的平移

这个不可以,临时变量具有常性,权限放大了,不可以

同理 这个不可以,函数返回的是拷贝,临时变量具有常性,权限放大了,不可以

 6.4 使用场景

        1. 做参数

void Swap(int& left, int& right)
{int temp = left;left = right;right = temp;
}

2. 做返回值

int& Count()
{static int n = 0;n++;// ...return n;
}

 静态不影响,不是静态变量返回的就是拷贝

下面代码输出什么结果?为什么?

 

6.5 传值、传引用效率比较 

以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直 接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效 率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。

#include <time.h>
struct A{ int a[10000]; };
void TestFunc1(A a){}
void TestFunc2(A& a){}
void TestRefAndValue()
{A a;// 以值作为函数参数size_t begin1 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc1(a);size_t end1 = clock();// 以引用作为函数参数size_t begin2 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc2(a);size_t end2 = clock();
// 分别计算两个函数运行结束后的时间cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}

 6.5.2 值和引用的作为返回值类型的性能比较

#include <time.h>
struct A{ int a[10000]; };
A a;
// 值返回
A TestFunc1() { return a;}
// 引用返回
A& TestFunc2(){ return a;}
void TestReturnByRefOrValue()
{// 以值作为函数的返回值类型size_t begin1 = clock();for (size_t i = 0; i < 100000; ++i)TestFunc1();size_t end1 = clock();// 以引用作为函数的返回值类型size_t begin2 = clock();for (size_t i = 0; i < 100000; ++i)TestFunc2();size_t end2 = clock();// 计算两个函数运算完成之后的时间cout << "TestFunc1 time:" << end1 - begin1 << endl;cout << "TestFunc2 time:" << end2 - begin2 << endl;
}

通过上述代码的比较,发现传值和指针在作为传参以及返回值类型上效率相差很大。

6.6 引用和指针的区别 

在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。

int main()
{
int a = 10;
int& ra = a;
cout<<"&a = "<<&a<<endl;
cout<<"&ra = "<<&ra<<endl;
return 0;
}

在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。 

int main()
{
int a = 10;
int& ra = a;
ra = 20;
int* pa = &a;
*pa = 20;
return 0;
}

我们来看下引用和指针的汇编代码对比:

引用和指针的不同点

1. 引用概念上定义一个变量的别名,指针存储一个变量地址。

2. 引用在定义时必须初始化,指针没有要求

3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何 一个同类型实体

4. 没有NULL引用,但有NULL指针

5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32 位平台下占4个字节)

6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小 

7. 有多级指针,但是没有多级引用

8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理

9. 引用比指针使用起来相对更安全

7. 内联函数

7.1 概念

以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调 用建立栈帧的开销,内联函数提升程序运行的效率。

如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的 调用。

查看方式:

1. 在release模式下,查看编译器生成的汇编代码中是否存在call Add

2. 在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不 会对代码进行优化。

7.2 特性

1. inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会 用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运 行效率。

2. inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建 议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不 是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。下图为 《C++prime》第五版关于inline的建议: 

3. inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址 了,链接就会找不到。 (内联函数不需要地址)

// F.h
#include <iostream>
using namespace std;
inline void f(int i);
// F.cpp
#include "F.h"
void f(int i)
{cout << i << endl;
}
// main.cpp
#include "F.h"
int main()
{f(10);return 0;
}
// 链接错误:main.obj : error LNK2019: 无法解析的外部符号 "void __cdecl 
f(int)" (?f@@YAXH@Z),该符号在函数 _main 中被引用

【面试题】 宏的优缺点?

优点: 1.增强代码的复用性。 2.提高性能。

缺点: 1.不方便调试宏。(因为预编译阶段进行了替换)

2.导致代码可读性差,可维护性差,容易误用。

3.没有类型安全的检查 。 C++有哪些技术替代宏?

1. 常量定义 换用const enum

2. 短小函数定义 换用内联函数 

8. auto关键字(C++11) 

随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:

1. 类型难于拼写

2. 含义不明确导致容易出错

#include <string>
#include <map>
int main()
{std::map<std::string, std::string> m{ { "apple", "苹果" }, { "orange", 
"橙子" }, {"pear","梨"} };std::map<std::string, std::string>::iterator it = m.begin();while (it != m.end()){//....}return 0;
}

std::map::iterator 是一个类型,但是该类型太长了,特别容 易写错。聪明的同学可能已经想到:可以通过typedef给类型取别名,比如:

#include <string>
#include <map>
typedef std::map<std::string, std::string> Map;
int main()
{Map m{ { "apple", "苹果" },{ "orange", "橙子" }, {"pear","梨"} };
Map::iterator it = m.begin();while (it != m.end()){//....}return 0;
}

使用typedef给类型取别名确实可以简化代码,但是typedef有会遇到新的难题:

typedef char* pstring;
int main()
{const pstring p1;    // 编译成功还是失败?const pstring* p2;   // 编译成功还是失败?return 0;
}

在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的 类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义。

8.2 auto简介

在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的 是一直没有人去使用它,大家可思考下为什么? C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一 个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。

int TestAuto()
{
return 10;
}
int main()
{
int a = 10;
auto b = a;
auto c = 'a';
auto d = TestAuto();
cout << typeid(b).name() << endl;
cout << typeid(c).name() << endl;
cout << typeid(d).name() << endl;
//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
return 0;
}

【注意】 使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto 的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编 译期会将auto替换为变量实际的类型。

8.3 auto的使用细则

1. auto与指针和引用结合起来使用 用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须 加&

int main()
{int x = 10;auto a = &x;auto* b = &x;auto& c = x;cout << typeid(a).name() << endl;cout << typeid(b).name() << endl;cout << typeid(c).name() << endl;*a = 20;*b = 30;c = 40;return 0;
}

2. 在同一行定义多个变量 当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译 器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。

void TestAuto()
{auto a = 1, b = 2; auto c = 3, d = 4.0;  // 该行代码会编译失败,因为c和d的初始化表达式类型不同
}

8.3 auto不能推导的场景 1. auto不能作为函数的参数

// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导
void TestAuto(auto a)
{}

2. auto不能直接用来声明数组

void TestAuto()
{int a[] = {1,2,3};auto b[] = {4,5,6};
}

3. 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法

4. auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有 lambda表达式等进行配合使用。

9. 基于范围的for循环(C++11)

9.1 范围for的语法

在C++98中如果要遍历一个数组,可以按照以下方式进行:

void TestFor()
{
int array[] = { 1, 2, 3, 4, 5 };
for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)array[i] *= 2;
for (int* p = array; p < array + sizeof(array)/ sizeof(array[0]); ++p)cout << *p << endl;
}

对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因 此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范 围内用于迭代的变量,第二部分则表示被迭代的范围。

void TestFor()
{
int array[] = { 1, 2, 3, 4, 5 };
for(auto& e : array)e *= 2;
for(auto e : array)cout << e << " ";
return 0;
}

注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。

9.2 范围for的使用条件

1. for循环迭代的范围必须是确定的 对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供 begin和end的方法,begin和end就是for循环迭代的范围。 注意:以下代码就有问题,因为for的范围不确定,只有在数组大小确定的时候才能使用范围for,这样范围for的实现中begin和end才能找到位置。否则使用传统for。

void TestFor(int array[])
{for(auto& e : array)cout<< e <<endl;
}

2. 迭代的对象要实现++和==的操作。(关于迭代器这个问题,以后会讲,现在提一下,没办法 讲清楚,现在大家了解一下就可以了)

10. 指针空值nullptr(C++11)

10.1

C++98中的指针空值 在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现 不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下 方式对其进行初始化:

void TestPtr()
{
int* p1 = NULL;
int* p2 = 0;
// ……
}

10.2

NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:

#ifndef NULL
#ifdef __cplusplus
#define NULL   0
#else
#define NULL   ((void *)0)
#endif
#endif

 可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。不论采取何 种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:

void f(int)
{cout<<"f(int)"<<endl;
}
void f(int*)
{cout<<"f(int*)"<<endl;
}
int main()
{f(0);f(NULL);f((int*)NULL);return 0;
}

程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的 初衷相悖。 在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器 默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void *)0。

注意:

1. 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入 的。2. 在C++11中,sizeof(nullptr) 与 sizeof((void*)0)所占的字节数相同。

3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/1655.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JAVA学习笔记28(常用类)

1.常用类 1.1 包装类 1.包装类的分类 ​ 1.针对八中基本数据类型相应的引用类型–包装类 ​ 2.有了类的特点&#xff0c;就可以调用类中的方法 2.包装类和基本数据类型的转换 ​ *装箱&#xff1a;基本类型 --> 包装类型 //手动装箱 int n1 100; Integer integer ne…

【C语言__函数栈帧的创建和销毁__复习篇9】

目录 前言 一、知识补充 二、分析创建和销毁的过程 三、前言问题回答 前言 本篇主要讨论以下问题&#xff1a; 1. 编译器什么时候为局部变量分配的空间 2. 为什么局部变量的值是随机的 3. 函数是怎么传参的&#xff0c;传参的顺序是怎样的 4. 形参和实参是什么关系 5. 函数…

电商平台业务及架构演变史

不少人认为电商系统很简单&#xff0c;因为现在做电商的太多了&#xff0c;看到的电商产品也多。看来看去产品都差不多&#xff0c;没什么特别。 其实中国电商发展已有20多年历史&#xff0c;电商以销售为核心连接着研、产、供、销、服整套的信息系统体系。其中的设计并没有那…

企业公众号数量怎么申请

一般可以申请多少个公众号&#xff1f;许多用户在申请公众号时可能会遇到“公众号显示主体已达上限”的问题。这是因为在2018年11月16日对公众号申请数量进行了调整&#xff0c;具体调整如下&#xff1a;1、个人主体申请公众号数量上限从2个调整为1个。2、企业主体申请公众号数…

vue---计算属性

姓名案例 1.使用插值语法实现 <!DOCTYPE html> <html><head><meta charset"UTF-8" /><title>姓名案例_插值语法实现</title><!-- 引入Vue --><script type"text/javascript" src"../js/vue.js"&g…

从源码选择到国际化运营:打造成功的跨境电商网站必备指南

跨境电商网站的成功离不开经过精心策划和执行的全面计划。从源码选择到国际化运营&#xff0c;每一步都至关重要。作为跨境电商领域的专家&#xff0c;我将为您提供打造成功跨境电商网站的必备指南&#xff0c;帮助您开拓全球市场&#xff0c;提升边际收入。 选择优质的跨境电…

云服务器ECS选型知多少

云服务器ECS选型知多少 ECS产品规格如何选择实例规格变配 说到云服务器ECS选型&#xff0c;那可以说太重要了。因为对于一个项目来说&#xff0c;从项目到开始到最后的部署上线&#xff0c;每一步都需要付出&#xff0c;这些对于企业或者个人来说都是一笔投入&#xff0c;那么如…

会议预告 | 易基因与您相约2024中国衰老科学大会(附日程) 新品首发

由中国细胞生物学学会衰老细胞生物学分会等单位联合主办&#xff0c;瓯江实验室、温州医科大学老年研究院等共同承办的2024中国衰老科学大会暨国际衰老生物学大会将于2024年4月26日-28日在温州召开。本次大会以“解码衰老”为主题&#xff0c;旨在汇聚全球科研精英&#xff0c;…

全开源商城源码后台php全端uniapp 全开源可二开 功能强大 商城系统源码

内容目录 一、详细介绍二、效果展示1.部分代码2.效果图展示 三、学习资料下载 一、详细介绍 内置8中搭配主色(可自行扩展更多配色)、自由快捷切换适应各大行业需求 已支持小程序&#xff08;微信、QQ、百度、支付宝、头条&抖音、快手&#xff09; H5 APP App.vue中修改 r…

EasyMR6.2 全面解读:四大功能深度优化,解锁全新大数据处理和计算体验

在刚刚过去的2024春季发布会上&#xff0c;袋鼠云带来了数栈产品V6.2版本的全新发布。其中&#xff0c;EasyMR 作为数栈V6.2中的一项关键能力&#xff0c;代表了袋鼠云对大数据生态的深入理解和持续创新。 EasyMR&#xff08;后文统称EMR&#xff09;是袋鼠云基于 Hadoop、Hiv…

CH341A/B USB转USART/I2C/SPI介绍

CH341A/B USB转USART/I2C/SPI介绍 &#x1f4cd;CH341官方文档&#xff1a;https://www.wch.cn/downloads/CH341DS2_PDF.html CH341A/B是一个USB总线的转接芯片&#xff0c;通过USB总线提供异步串口、打印口、并口以及常用的2线和4线等同步串行接口。 &#x1f341;芯片封装&a…

前端表单input的简单使用

1.代码结构介绍 2.实战效果

The layered MVP architecture in Acise

Acise是一款CAx软件开发平台&#xff0c;本文给出Acise中的MVP架构模式的实现思路。 注1&#xff1a;文章内容会不定期更新。 MVP Data Model View Model 参考文献 Erich Gamma. Design Patterns:elements of reusable object-oriented software. Addison Wesley, 1994.Josep…

查询服务器上所有SQL SERVER数据库中是否包含某个字段,且该字段是否包含某个值

公司有一堆相同类别的客户&#xff0c;每个客户都部署了相同的一套系统&#xff0c;每套系统对应一个相同结构的数据库&#xff0c;昨天老板让查一下手机号码177xxxxx248是属于哪个客户的客户。 我要查的这个号码来自于oa_member表中的phone字段&#xff0c;我需要对所有的数据…

实测52.4MB/s!全志T3+FPGA的CSI通信案例分享!

CSI总线介绍与优势 CSI&#xff08;CMOS sensor parallel interfaces&#xff09;总线是一种用于连接图像传感器和处理器的并行通信接口&#xff0c;应用于工业自动化、能源电力、智慧医疗等领域&#xff0c;CSI总线接口示意图如下所示&#xff08;以全志科技T3处理器的CSI0为…

2024年51cto视频如何提取

2024年&#xff0c;对于如何提取51cto网站上的视频&#xff0c;许多人都选择在该平台购买自己所需的学习视频。然而&#xff0c;在51cto网页上观看视频将消耗用户的流量。为了解决这一问题&#xff0c;我开发了名为小白51cto工具的软件&#xff0c;使用户能够轻松将视频下载到本…

如何增强Java GCExcel API 的导入和导出性能

前言 GrapeCity Documents for Excel (以下简称GcExcel) 是葡萄城公司的一款服务端表格组件&#xff0c;它提供了一组全面的 API 以编程方式生成 Excel (XLSX) 电子表格文档的功能&#xff0c;支持为多个平台创建、操作、转换和共享与 Microsoft Excel 兼容的电子表格&#xf…

web前端(简洁版)

0. 开发环境 && 安装插件 这里我使用的是vscode开发环境 Auto Rename Tag是语法自动补齐view-in-browser是快速在浏览器中打开live server实时网页刷新 1. HTML 文件基本结构 <html><head><title>第一个页面</title></head><body&g…

开源事件通知库libevent及网络连接管理模块bufferevent详解

目录 1、libevent介绍 1.1、什么是libevent&#xff1f; 1.2、libevent特点 1.3、网络连接管理模块bufferevent 2、bufferevent有什么用&#xff1f; 3、bufferevent的整体设计与实现细节 3.1、整体概况 3.2、evbuffer与bufferevent 3.3、defer callback 4、bufferev…

python爬虫之爬取微博评论(4)

一、获取单页评论 随机选取一个微博&#xff0c;例如下面这个 【#出操死亡女生家属... - 冷暖视频的微博 - 微博 (weibo.com) 1、fnf12&#xff0c;然后点击网络&#xff0c;搜索评论内容&#xff0c;然后预览&#xff0c;就可以查看到网页内容里面还有评论内容 2、编写代码…