Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之二 简单人脸检测添加戴眼镜效果

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之二 简单人脸检测添加戴眼镜效果

目录

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之二 简单人脸检测添加戴眼镜效果

一、简单介绍

二、简单人脸检测添加戴眼镜效果实现原理

三、简单人脸检测添加戴眼镜效果案例实现简单步骤

四、注意事项


一、简单介绍

Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。Python是一种解释型脚本语言,可以应用于以下领域: Web 和 Internet开发、科学计算和统计、人工智能、教育、桌面界面开发、软件开发、后端开发、网络爬虫。

这里使用 Python  基于 OpenCV 进行视觉图像处理,......

人脸检测的两个重要概念:哈尔特征分类器(Haar Feature Classifier)和级联分类器(Cascade Classifier)是用于。

哈尔特征分类器:

    定义:哈尔特征分类器是一种基于哈尔特征的机器学习算法,用于检测图像中的对象或特定区域。

    原理:哈尔特征是一种基于图像局部特征的数学描述方法,通过对图像中不同区域像素值的差异进行计算,提取出具有区分度的特征。这些特征可以是边缘、线段、角点等。哈尔特征分类器通过训练过程学习到一组有效的特征模式,用于区分目标和非目标区域。

    应用:哈尔特征分类器常用于对象检测任务,如人脸检测、眼睛检测等。在训练过程中,通常需要提供正样本(包含目标的图像)和负样本(不包含目标的图像),让分类器学习区分目标和非目标的特征模式。

级联分类器:

    定义:级联分类器是一种多级联组成的分类器结构,由多个弱分类器组成,通过级联方式实现目标检测。

    原理:级联分类器将多个简单的分类器组合成一个复杂的分类器,每个简单分类器都是一个弱分类器,对目标区域进行初步筛选或过滤。级联分类器通过级联多个弱分类器,每个分类器都负责判断一组特征是否满足条件,通过级联的方式实现高效的目标检测。

    应用:级联分类器常用于实时目标检测任务,如人脸检测、车辆检测等。OpenCV 中的 Haar 级联分类器是基于哈尔特征的级联分类器,通过级联多个分类阶段来实现高效的人脸检测。级联分类器的优势在于其高速、高效的检测性能,适用于实时应用场景。

OpenCV 提供了一些已经训练好的级联分类器,这些级联分类器以XML文件的方式保存在以下路径中:

 ...\Python\Lib\site-packages\cv2\data\

OpenCV提供了一些经过预训练的人脸检测器模型文件,这些文件通常包含在OpenCV的安装包中。你可以在OpenCV的官方GitHub页面或者OpenCV官方网站的下载页面找到这些模型文件的下载链接。

一般来说,你可以从以下位置获取OpenCV的预训练模型文件:

  • OpenCV GitHub Release 页面:在 Releases · opencv/opencv · GitHub 找到你需要的版本,然后在下载的压缩包中找到位于 opencv\data 目录下的人脸检测器模型文件。
  • OpenCV 官方网站下载页面:访问 OpenCV 官方网站 Releases - OpenCV ,下载你需要的版本,并在相应的压缩包中查找人脸检测器模型文件。

请确保下载与你使用的OpenCV版本兼容的模型文件。

二、简单人脸检测添加戴眼镜效果实现原理

人脸检测添加带眼镜效果是指利用计算机视觉技术中的人脸检测算法,识别图像或视频中的人脸,并在识别到的人脸位置上叠加眼镜图像,以实现给人脸添加眼镜的效果。

实现原理:

  1. 使用 OpenCV 的人脸识别功能检测图像中的人脸位置。
  2. 在检测到的每张人脸位置上,根据人脸的宽度调整眼镜的大小。
  3. 将调整后的眼镜图像覆盖到人脸图像上,完成眼镜效果的添加。

具体方法:

  1. 使用 OpenCV 加载人脸识别分类器。
  2. 读取人脸图像和眼镜图像。
  3. 对人脸图像进行人脸检测,获取人脸的位置信息。
  4. 遍历检测到的每张人脸,根据人脸宽度调整眼镜大小。
  5. 将调整后的眼镜图像覆盖到对应人脸位置上。
  6. 返回带有眼镜效果的图像数据。

案例中涉及的两个关键函数说明

  1. over_img(img, img_over, over_x, over_y)

    • 功能:将一个图像覆盖在另一个图像的指定位置上。
    • 参数:
      • img:原始图像,numpy 数组格式。
      • img_over:要覆盖的图像,numpy 数组格式。
      • over_x:要覆盖图像的左上角 x 坐标。
      • over_y:要覆盖图像的左上角 y 坐标。
    • 返回值:覆盖后的图像,numpy 数组格式。
  2. apply_glasses(input_image_path, glasses_image_path, vertical_offset=0.35)

    • 功能:在输入的人脸图像上添加眼镜效果。
    • 参数:
      • input_image_path:输入的人脸图像路径。
      • glasses_image_path:眼镜图像的路径。
      • vertical_offset:眼镜垂直位置的调整参数,默认值为0.35。
    • 返回值:带眼镜效果的图像数据,numpy 数组格式。
  3. cv2.CascadeClassifier()

    • 函数说明:用于加载 Haar 级联分类器,用于人脸检测。
    • 参数:
      • xml_file_path:Haar 级联分类器的 XML 文件路径。
    • 返回值:返回一个级联分类器对象,用于后续的人脸检测

这些函数负责在人脸图像上添加眼镜效果,其中over_img函数用于将眼镜图像覆盖到人脸图像的指定位置上,而apply_glasses函数则是整个眼镜效果添加的入口函数,调用了人脸识别、图像处理等功能。

三、简单人脸检测添加戴眼镜效果案例实现简单步骤

1、编写代码

2、运行效果

3、具体代码

"""
简单人脸检测添加戴眼镜效果1、使用 OpenCV 加载人脸识别分类器。2、读取人脸图像和眼镜图像。3、对人脸图像进行人脸检测,获取人脸的位置信息。4、遍历检测到的每张人脸,根据人脸宽度调整眼镜大小。5、将调整后的眼镜图像覆盖到对应人脸位置上。6、返回带有眼镜效果的图像数据。
"""import cv2def over_img(img, img_over, over_x, over_y):"""将一张图像覆盖到另一张图像上:param img: (numpy.ndarray) 目标图像数据:param img_over: (numpy.ndarray) 待覆盖图像数据,包含 alpha 通道:param over_x: (int) 待覆盖图像左上角的 x 坐标:param over_y: (int) 待覆盖图像左上角的 y 坐标:return: numpy.ndarray 覆盖后的图像数据"""img_h, img_w, c = img.shapeimg_over_h, img_over_w, over_c = img_over.shape# 将待覆盖图像转换为带 alpha 通道的 BGRA 格式if over_c == 3:img_over = cv2.cvtColor(img_over, cv2.COLOR_BGR2BGRA)# 遍历待覆盖图像的每个像素for w in range(0, img_over_w):for h in range(0, img_over_h):# 透明像素不能覆盖目标图像if img_over[h, w, 3] != 0:# 遍历 RGB 通道for c in range(0, 3):x = over_x + wy = over_y + h# 如果超出目标图像范围,则跳出循环if x >= img_w or y >= img_h:break# 将待覆盖图像像素覆盖到目标图像上img[y, x, c] = img_over[h, w, c]return imgdef apply_glasses(input_image_path, glasses_image_path, vertical_offset=0.35):"""在人脸图像上添加眼镜效果:param input_image_path: (str) 输入的人脸图像路径:param glasses_image_path: (str) 眼镜图像的路径:param vertical_offset: (float) 眼镜垂直位置的调整参数,范围为0到1,默认值为0.35:return: numpy.ndarray 带眼镜效果的图像数据"""# 参数安全性校验if not isinstance(input_image_path, str) or not input_image_path.strip():raise ValueError("Invalid input image path.")if not isinstance(glasses_image_path, str) or not glasses_image_path.strip():raise ValueError("Invalid glasses image path.")if not (0 <= vertical_offset <= 1):raise ValueError("Vertical offset parameter must be between 0 and 1.")# 读取人脸和眼镜图像img = cv2.imread(input_image_path)glass = cv2.imread(glasses_image_path, cv2.IMREAD_UNCHANGED)  # 保留图像类型height, weight, channel = glass.shape# 加载人脸识别联结器faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")# 进行人脸检测faces = faceCascade.detectMultiScale(img, 1.15, 4)# 对每个检测到的人脸应用眼镜效果for (x, y, w, h) in faces:gw = wgh = int(height * gw / weight)# 调整眼镜图像大小以适应人脸宽度img_over_new = cv2.resize(glass, (gw, gh))# 将眼镜图像覆盖到人脸图像上img = over_img(img, img_over_new, x, y + int(h * vertical_offset))# 绘制脸部范围图框# cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 5)return img# 测试接口调用
if __name__ == "__main__":input_image_path = "Images/TwoManFace.png"glasses_image_path = "Images/glasses.png"try:output_img = apply_glasses(input_image_path, glasses_image_path, vertical_offset=0.0)cv2.imshow("output_img", output_img)cv2.waitKey(0)cv2.destroyAllWindows()print("Glasses applied successfully.")except ValueError as ve:print(f"Error: {ve}")

四、注意事项

  1. 人脸识别结果可能有误,因此需要根据实际情况调整眼镜的位置和大小。
  2. 眼镜图像的背景应该是透明的,以便与人脸图像进行叠加。
  3. 调整眼镜大小时,应保持眼镜的比例,以确保效果自然。
  4. 确保输入图像路径和眼镜图像路径有效,以避免出现读取失败的情况。
  5. 在覆盖眼镜图像到人脸图像时,注意边界情况,防止超出图像范围。
  6. 眼镜的垂直位置调整参数应在0到1之间,表示眼镜在人脸垂直方向上的偏移量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/1304.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《机器学习by周志华》学习笔记-线性模型-02

1、对数几率回归 1.1、背景 上一节我们考虑了线性模型的回归学习,但是想要做分类任务就需要用到上文中的广义线性模型。 当联系函数连续且充分光滑,考虑单调可微函数,令: 1.2、概念 找一个单调可谓函数,将分类任务的真实标记与线性回归模型的预测值联系起来,也叫做「…

Kafka集群搭建可视化指南

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 Kafka集群搭建可视化指南 前言准备工作硬件要求环境准备 kafka集群的部署与配置3.1 单节点部署与多节点集群搭建单节点部署&#xff1a;多节点集群搭建&#xff1a; 3.2 Broker配置与优化3.3 Topic的创…

政安晨:【Keras机器学习示例演绎】(七)—— 利用 NeRF 进行 3D 体积渲染

目录 简介 设置 下载并加载数据 NeRF 模型 训练 可视化训练步骤 推理 渲染三维场景 可视化视频 结论 政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras机器学习实战 希望政安晨的博客能够对您有所裨益&#xff0…

open Gauss 数据库-05 openGauss数据库备份恢复指导手册

发文章是为了证明自己真的掌握了一个知识&#xff0c;同时给他人带来帮助&#xff0c;如有问题&#xff0c;欢迎指正&#xff0c;祝大家万事胜意&#xff01; 目录 前言 openGauss数据库备份恢复 1 实验介绍 1.1 关于本实验 1.2 实验目的 2 实验前提 3 物理备份和恢复…

「GO基础」在Windows上配置VS Code GO语言开发环境

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

Linux操作系统·Linux简介

1.世界上第一个完善的网络操作系统 Unix是1969年由美国电话电报公司(AT&T)贝尔实验室的两个工程师所创造的操作系统&#xff0c;它允许计算机同时处理多用户和程序。目前大型政府单位、大型企业、航空公司、金融机构多在使用&#xff0c;价钱昂贵&#xff0c;但性能和稳定性…

车载诊断的基本框架和概念

车载诊断的基本框架和概念 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不…

springboot+java照相馆预约管理系统ssm

框架&#xff1a;ssm/springboot都有 jdk版本&#xff1a;1.8 及以上 ide工具&#xff1a;IDEA 或者eclipse 数据库: mysql 编程语言: java 前端&#xff1a;layuibootstrapjsp 详细技术&#xff1a;HTMLCSSJSjspspringmvcmybatisMYSQLMAVENtomcat 开发工具 IntelliJ IDEA: 一…

回归预测 | Matlab实现BO-RF贝叶斯优化随机森林多变量回归预测

回归预测 | Matlab实现BO-RF贝叶斯优化随机森林多变量回归预测 目录 回归预测 | Matlab实现BO-RF贝叶斯优化随机森林多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现BO-RF贝叶斯优化随机森林多变量回归预测&#xff1b; 2.输入7个特征&#xf…

Linux Supervisor进程控制系统完全教程

一、简介 Supervisor是一个进程控制系统&#xff0c;它使用户能够监视和控制类unix操作系统进程。它通过提供基于配置或事件启动、停止和重新启动进程的机制&#xff0c;帮助管理应该在系统中连续运行的进程。对于需要控制和监视Linux或其他类unix操作系统上多个进程的状态的开…

如何设置unbuntu时间及同步时间

文章目录 时区时间同步与服务 时间同步的重要性Ubuntu系统中设置时间和同步时间方法一&#xff1a;通过图形界面设置查看当前时间设置时间和时区设置时区&#xff08;假设设置为UTC&#xff09;&#xff1a;设置本地时间&#xff08;例如&#xff0c;设置时间为2024年4月21日 1…

String、StringBuilder、StringBuffer区别;String底层详解,实例化、拼接、比较;String为什么不可变

文章目录 0、前言一、String、StringBuilder、StringBuffer区别二、String简介2.1 String类特点2.2 创建String对象、String实例化2.2.1 实例化方法2.2.2 String str1"abc"和String str2new String("abc")区别 2.3 String的比较2.4 String类的“加法”2.5 …

【youcans电力电子仿真 03】Boost变换电路

【youcans电力电子仿真 03】Boost变换电路 Boost变换电路是Buck变换电路的对偶拓扑&#xff0c;也属于非隔离型直流变换器&#xff0c;其输出电压大于输入电压。Boost变换电路具有效率高、输出稳定、控制简单和成本低的优点&#xff0c;广泛应用于电子设备、光伏发电、无线通信…

了解MySQL InnoDB多版本MVCC(Multi-Version Concurrency Control)

了解MySQL InnoDB多版本MVCC&#xff08;Multi-Version Concurrency Control&#xff09; 在数据库管理系统中&#xff0c;多版本并发控制&#xff08;MVCC&#xff09;是一种用于实现高并发和事务隔离的技术。MySQL的InnoDB存储引擎支持MVCC&#xff0c;这使得它可以在提供高…

伪分布Hadoop下安装Hive

一、下载并安装Mysql &#xff08;1&#xff09;下载mysql安装包&#xff08;mysql-8.0.26-1.el7.x86_64.rpm-bundle.tar&#xff09; 下载官网&#xff1a;MySQL :: Download MySQL Community Server (Archived Versions)https://downloads.mysql.com/archives/community/ &…

Linux-用户管理类命令实训

掌握Linux各类命令的使用方法。熟悉Linux操作环境。掌握常用文件目录类命令掌握常用系统信息类命令了解其他常用命令 一、文件与目录管理 &#xff08;1&#xff09;查看根目录下有哪些内容 &#xff08;2&#xff09;进入/tmp目录&#xff0c;以自己的学号建一个目录&#x…

HTML部分常用标签补充

table&#xff08;布局方面不建议使用&#xff0c;而是使用CSS来完成&#xff09;: 标签解释&#xff1a; ~table标签顾名思义&#xff0c;是表格的意思 ~table其中可以使用boder属性来显示表格的线&#xff0c;最好使用CSS来配合HTML的使用 ~table内的内容可以使用colspan来定…

Vue2slot插槽(理解与应用)

1、插槽的概念 插槽&#xff08;Slot)是vue为组件的封装者提供的能力。允许开发者在封装组件时&#xff0c;把不确定的、希望由用户指定的部分定义为插槽。 举个例子&#xff1a;组件好比小霸王游戏机&#xff0c;插槽就是游戏机的插口&#xff0c;看用户插什么卡&#xff0c;就…

【论文精读】Attention is all you need

摘要 主要的序列转换模型是基于复杂的循环或卷积神经网络&#xff0c;其中包括一个编码器和一个解码器。性能最好的模型还通过一种注意力机制将编码器和解码器连接起来。我们提出了一种新的简单的网络架构&#xff0c;Transformer&#xff0c;完全基于注意机制&#xff0c;完全…

24五一杯资料汇总!!!!

以下内容为23年五一杯内容&#xff0c;24年也将会按时更新资料&#xff01;&#xff01;&#xff01; 问题1&#xff1a;给定建筑物数据&#xff0c;假设该建筑物内温度需要一直保持在18-26度&#xff0c;在温度不适宜的时候要通过电来调节温度&#xff0c;消耗一度电相当于0.…