数据可视化(六):Pandas爬取NBA球队排名、爬取历年中国人口数据、爬取中国大学排名、爬取sina股票数据、绘制精美函数图像

Tips:"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起分享这份快乐吧😊!

喜欢我的博客的话,记得点个红心❤️和小关小注哦!您的支持是我创作的动力!数据源存放在我的资源下载区啦!

数据可视化(六):Pandas爬取NBA球队排名、爬取历年中国人口数据、爬取中国大学排名、爬取sina股票数据、绘制精美函数图像

目录

    • 数据可视化(六):Pandas爬取NBA球队排名、爬取历年中国人口数据、爬取中国大学排名、爬取sina股票数据、绘制精美函数图像
      • 1. 爬取NBA球队排名页面,并进行分析
      • 2. 爬取以下网址的历年中国人口数据进行并进行分析
      • 3. 获取大学排名数据并进行分析
      • 4. 获取sina股票数据并进行分析
      • 5. matplotlib模仿绘图
      • 6. matplotlib模仿绘图

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams["font.family"]=['SimHei']
plt.rcParams['axes.unicode_minus']=False

1. 爬取NBA球队排名页面,并进行分析

  • 页面url https://nba.hupu.com/standings

提示:

data = pd.read_html(url, header=0) #header=0 去掉第一行列索引
# 爬取数据并将东部和西部联盟存放到df1 df2
url = "https://nba.hupu.com/standings"
data = pd.read_html(url,header=0) #header=0 去掉第一行列索引
data_merge = pd.concat([df,data[0]])data_merge.columns = data_merge.iloc[0,:]
data_merge = data_merge.iloc[1:]# 重置索引,不保留原索引作为新列  
data_merge.reset_index(drop=True, inplace=True)  

# 东部数据
df1 = data_merge.iloc[0:15,:]
df1# 西部数据
df2 = data_merge.iloc[17:,:]
df2.reset_index(drop=True, inplace=True)  
df2

# 将df1增加一列"所属联盟",赋值为"东部赛区"
df1["所属联盟"] = "东部赛区"
df1# 将df2增加一列"所属联盟",赋值为"西部赛区"
df2["所属联盟"] = "西部赛区"
df2# 将df1、df2合并成df
df_merge = pd.concat([df1,df2], axis = 0)
df_merge.reset_index(drop=True,inplace=True)
df_merge

# 将df数据保存为csv文件 nba.csv
df_merge.to_csv('./nba.csv', encoding='utf-8', index=False,sep=",")
# 将所有球队按照 胜率(百分比) 降序排序,排名相同的队伍按 失分 升序排名
# 提示:ascending也可以接收列表参数
df_merge.sort_values(by=["胜率","失分"],ascending=[False,True]).reset_index(drop=True)

# 对df按“所属联盟”分组,计算胜、负、胜率的最大值、最小值、均值、标准差
# 注意:百分比不是数值,要转换成小数
# 转换数值类型
df_merge["胜"] = df_merge["胜"].astype(int)
df_merge["负"] = df_merge["负"].astype(int)
# 将百分比字符串转换为小数  
df_merge['胜率'] = df_merge['胜率'].str.replace('%', '').astype(float) / 100
df_merge.head()df_grouped = df_merge.groupby(by='所属联盟').agg({  '胜': ['max', 'min', 'mean', 'std'],  '负': ['max', 'min', 'mean', 'std'],  '胜率': ['max', 'min', 'mean', 'std']  
})  

# 柱状图显示东西赛区的胜率(百分比)均值
# 提取胜率均值列,并重置列名以简化后续操作  
df_grouped_win_rate_mean = df_grouped['胜率']['mean'].reset_index()  
df_grouped_win_rate_mean.columns = ['所属联盟', '胜率均值']  
df_grouped_win_rate_mean# 将胜率均值转换为百分比  
df_grouped_win_rate_mean['胜率均值_百分比'] = df_grouped_win_rate_mean['胜率均值'] * 100  
df_grouped_win_rate_mean# 绘制柱状图  
plt.figure(figsize=(10, 6))  # 设置图形大小  
bars = plt.bar(df_grouped_win_rate_mean['所属联盟'], df_grouped_win_rate_mean['胜率均值_百分比'])  # 设置数据标签  
def format_percent(x):  return "{:.2%}".format(x / 100)  # 添加百分比形式的数据标签  
for rect in bars:  height = rect.get_height()  plt.text(rect.get_x() + rect.get_width() / 2, height, format_percent(height),  ha='center', va='bottom')  plt.xlabel('所属联盟')  # 设置x轴标签  
plt.ylabel('胜率均值')  # 设置y轴标签  
plt.title('东西赛区胜率均值比较')  # 设置图形标题  
plt.xticks(rotation=0)  # 设置x轴刻度标签的旋转角度为0  
plt.tight_layout()  # 调整布局  
plt.ylabel('胜率均值 (%)')  # 将y轴标签更改为百分比形式  
plt.show()  # 显示图形

2. 爬取以下网址的历年中国人口数据进行并进行分析

url = ‘https://population.gotohui.com/’

# 爬取数据并存放到df,并将df保存为population.csv
url = 'https://population.gotohui.com/'
data = pd.read_html(url,header=0) #header=0 去掉第一行列索引df = data[0]
df.to_csv("./population.csv", encoding='utf-8', index=False,sep=",")

# 统计df表格中的空值
# 检测空值  
null_values = df.isnull() 
total_null_count = null_values.sum()  
total_null_count

在这里插入图片描述

# 将空值的列'老年人(%)'、'儿童(%)'中数据用前值替换;'男性(%)'、'女性(%)'用均值替换
# 使用前一个非空值替换 '老年人(%)' 和 '儿童(%)' 列中的空值  
df['老年(%)'].fillna(method='ffill', inplace=True)  
df['儿童(%)'].fillna(method='ffill', inplace=True)  # 计算 '男性(%)' 和 '女性(%)' 列的均值,并替换这些列中的空值  
mean_male = df['男性(%)'].mean()  
mean_female = df['女性(%)'].mean()  
df['男性(%)'].fillna(mean_male, inplace=True)  
df['女性(%)'].fillna(mean_female, inplace=True) 
df

# 将除了 时间(年) 列外所有的列的数据改成保留小数点后2位小数
# 提示:采用lambda函数和applymap函数
# 保留除了'时间'字段之外的列的小数点后两位  
columns_to_round = ['人口(万人)', '出生率(‰)', '增长率(‰)', '老年(%)', '儿童(%)', '男性(%)', '女性(%)']  df[columns_to_round] = df[columns_to_round].apply(lambda x: x.round(2))  # 查看格式化后的输出,可以设置显示选项 (空值输出时浮点数格式)
pd.options.display.float_format = '{:.2f}'.format # 显示修改后的DataFrame  
df.head()

# 在同一张表上绘制历年人口出生率和增长率曲线
# 确保'时间'列是日期类型,这样可以按时间顺序绘制曲线  
df['时间'] = pd.to_datetime(df['时间'], format='%Y')  # 假设时间格式为'年'  # 绘制出生率曲线  
plt.plot(df['时间'], df['出生率(‰)'], label='出生率(‰)', marker='o')  # 绘制增长率曲线  
plt.plot(df['时间'], df['增长率(‰)'], label='增长率(‰)', marker='o', linestyle='--')  # 设置图表标题和坐标轴标签  
plt.title('历年人口出生率和增长率曲线')  
plt.xlabel('时间')  
plt.ylabel('比率')  # 显示图例  
plt.legend()  # 显示网格  
plt.grid(True)  # 格式化x轴以显示年份  
plt.gcf().autofmt_xdate()  # 显示图表  
plt.show()

# 绘制男女比率差绝对值的曲线图
# 计算男女比率差的绝对值  
df['比率差绝对值'] = abs(df['男性(%)'] - df['女性(%)'])  
df# 绘制男女比率差绝对值的曲线图  
plt.plot(df['时间'], df['比率差绝对值'], marker='o')  # 设置图表标题和坐标轴标签  
plt.title('男女比率差绝对值曲线图')  
plt.xlabel('时间')  
plt.ylabel('比率差绝对值')  # 显示网格  
plt.grid(True)    # 显示图表  
plt.show()

# 在一个画布的四个子画布上(两行两列)分别画出:
# 1、近十年老人、儿童、其它(100减去老人、儿童占比)人群比率均值的柱状比较图
# 2、近五年男性、女性比率的柱状比较图
# 3、近十年人口增增长率和出生率的水平柱状图
# 4、2022年老人、儿童、其它的饼图import matplotlib.pyplot as plt  
import pandas as pd  # 假设df_1, df_2, df_3, df_4已经定义好,并且包含了需要绘制的数据  # 创建一个2x2的画布和子图  
fig, axs = plt.subplots(2, 2, figsize=(12, 8))  # 第一幅图:近十年老人、儿童、其它人群比率均值的柱状比较图  
bars = axs[0, 0].bar(df_1.columns, df_1.iloc[0])  
bar_width = 0.35  
axs[0, 0].set_title('近十年老人、儿童、其它人群比率均值的柱状比较图')  
axs[0, 0].set_xlabel('人群')  
axs[0, 0].set_ylabel('比率均值(%)')  
for bar in bars:  height = bar.get_height()  axs[0, 0].text(bar.get_x() + bar_width / 2, height, '{:.2f}'.format(height), ha='center', va='bottom')  # 第二幅图:近五年男性和女性比例的柱状比较图  
df_2 = df_2.sort_values(by='时间')  
bar_width = 0.35  
index_male = range(len(df_2))  
index_female = [i + bar_width for i in index_male]  axs[0, 1].bar(index_male, df_2['男性(%)'], bar_width, label='男性比例')  
axs[0, 1].bar(index_female, df_2['女性(%)'], bar_width, label='女性比例')  # 设置x轴的标签位置为index_male的中间位置,并且标签内容为df_2['时间']的值  
tick_positions = [i + bar_width / 2 for i in index_male]  
axs[0, 1].set_xticks(tick_positions)  
axs[0, 1].set_xticklabels(df_2['时间'])  # 设置x轴的标签内容  # 设置x轴刻度标签的旋转角度  
axs[0, 1].tick_params(axis='x', rotation=45)  # 旋转x轴刻度标签  axs[0, 1].set_title('近五年男性和女性比例的柱状比较图')  
axs[0, 1].set_xlabel('年份')  
axs[0, 1].set_ylabel('比例(%)')  
axs[0, 1].legend()  # 第三幅图:近十年人口增长率和出生率水平柱状图  
axs[1, 0].barh(df_3['时间'], df_3['增长率(‰)'], label='增长率', color='skyblue')  
axs[1, 0].barh(df_3['时间'], df_3['出生率(‰)'], left=df_3['增长率(‰)'], label='出生率', color='lightcoral')  
axs[1, 0].set_title('近十年人口增长率和出生率水平柱状图')  
axs[1, 0].set_xlabel('千分比')  
axs[1, 0].set_ylabel('年份')  
axs[1, 0].legend()  
axs[1, 0].grid(axis='x', alpha=0.75)  # 第四幅图:2022年老人、儿童、其他人群分布的饼图  
labels = df_4.columns  
sizes = df_4.iloc[0]  
axs[1, 1].pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)  
axs[1, 1].axis('equal')  
axs[1, 1].set_title('2022年老人、儿童、其他人群分布')  # 调整子图间距  
plt.tight_layout()  # 显示整个画布  
plt.show()

# 在同一幅图上画出'出生率(‰)', '增长率(‰)'箱线图。
import seaborn as sns  
import matplotlib.pyplot as plt  # 设置图形大小  
plt.figure(figsize=(10, 6))  # 绘制箱线图  
sns.boxplot(data=df[['出生率(‰)', '增长率(‰)']])  # 设置标题和轴标签  
plt.title('出生率和增长率的箱线图')  
plt.xlabel('指标')  
plt.ylabel('值 (‰)')  # 显示图形  
plt.show()

# 利用散点图寻找 ‘增长率(‰)’ 异常值的年份,即寻找增长率背离正常变化范围的年份。
import matplotlib.pyplot as plt  
import pandas as pd  
import numpy as np  # 计算增长率的四分位数  
Q1 = df_6['增长率(‰)'].quantile(0.25)  
Q3 = df_6['增长率(‰)'].quantile(0.75)  # 定义正常值范围,这里使用0.8倍IQR作为异常值的界限  
lower_bound = Q1 - 0.8 * IQR  
upper_bound = Q3 + 0.8 * IQR  # 识别异常值  
outliers = df_6[(df_6['增长率(‰)'] < lower_bound) | (df_6['增长率(‰)'] > upper_bound)]  # 绘制散点图  
plt.figure(figsize=(10, 6))  
plt.scatter(df_6['时间'], df_6['增长率(‰)'], color='blue', label='正常值')  # 在图上标注异常值  
plt.scatter(outliers['时间'], outliers['增长率(‰)'], color='red', label='异常值')  
for index, row in outliers.iterrows():  plt.annotate(f'({row["时间"]}, {row["增长率(‰)"]})', (row['时间'], row['增长率(‰)']))  # 设置标题和轴标签  
plt.title('增长率随时间变化的散点图及异常值标注')  
plt.xlabel('时间')  
plt.ylabel('增长率(‰)')  # 显示图例  
plt.legend()  # 显示网格线  
plt.grid(True)  # 显示图形  
plt.show()

# 利用正态分布方法(类似3𝜎方法,采用1.5𝜎)找出增长率异常值
import pandas as pd  
import numpy as np  
import matplotlib.pyplot as plt  # 计算增长率的均值和标准差  
mean_growth_rate = df_7['增长率(‰)'].mean()  
std_growth_rate = df_7['增长率(‰)'].std()  # 设定异常值的阈值,这里使用1.5倍标准差  
threshold = mean_growth_rate + 1.5 * std_growth_rate  
# 对于低于均值的异常值,使用负的1.5倍标准差  
lower_threshold = mean_growth_rate - 1.5 * std_growth_rate  # 识别异常值  
outliers_upper = df_7[df_7['增长率(‰)'] > threshold]  
outliers_lower = df_7[df_7['增长率(‰)'] < lower_threshold]  
outliers = pd.concat([outliers_upper, outliers_lower])  # 绘制散点图,并标注异常值  
plt.figure(figsize=(10, 6))  
plt.scatter(df_7['时间'], df_7['增长率(‰)'], color='blue', label='正常值')  # 标注异常值  
plt.scatter(outliers['时间'], outliers['增长率(‰)'], color='red', label='异常值')  
for index, row in outliers.iterrows():  plt.annotate(f'({row["时间"]}, {row["增长率(‰)"]})', (row['时间'], row['增长率(‰)']))  # 设置标题和轴标签  
plt.title('增长率随时间变化的散点图及异常值标注')  
plt.xlabel('时间')  
plt.ylabel('增长率(‰)')  # 显示图例  
plt.legend()  # 显示网格线  
plt.grid(True)  # 显示图形  
plt.show()

3. 获取大学排名数据并进行分析

  • 获取数据地址:http://www.jdxzz.com/paiming/2022/0830/9651208.html
  • 数据爬取后,存在“主榜”和“副榜”,只保留主榜数据

提示:

data = pd.read_html(url, header=0) #header=0 去掉第一行列索引
df = pd.DataFrame(data[0]) # 只获取主榜表格数据
# 获取“主榜”数据并放入df
# 将数据保存到universities.csv
url = 'http://www.jdxzz.com/paiming/2022/0830/9651208.html'
data = pd.read_html(url,header=0) #header=0 去掉第一行列索引
datadf = data[0]
df.to_csv("../data/universities.csv", encoding='utf-8', index=False,sep=",")

# 不同 办学层次 的大学数量?
# 画出不同 办学层次 的大学数量的折线图,按升序画
df_group = df.groupby(by='办学层次')["办学层次"].count().reset_index(name='数量')
df_group = df_group.sort_values(by='数量',ascending=True).reset_index(drop=True)
df_groupimport matplotlib.pyplot as plt  # 绘制折线图  
plt.figure(figsize=(10, 6))  # 设置图形大小  
plt.plot(df_group['办学层次'], df_group['数量'], marker='o')  # 绘制折线,并使用圆圈标记数据点  # 设置标题和轴标签  
plt.title('不同办学层次的大学数量折线图')  
plt.xlabel('办学层次')  
plt.ylabel('数量')  # 显示网格线  
plt.grid(True)  # 显示图形  
plt.show()

# 显示只包含 财经大学、财经学院 的子表,并按排名排列
# 提示:Pandas 中类似SQL中的like查询
# df.query('column.str.contains("string")', engine='python')df_gdufe = df.query('学校名称.str.contains("财经")', engine='python').reset_index(drop=True)
df_gdufe

# 计算不同 办学层次 大学的 总分均值、排名均值,四舍五入取一位小数
df_grouped = df.groupby(by='办学层次').agg({  '总分': 'mean',  '全国排名': 'mean'  
}).round(1)df_grouped.columns = ["总分均值","排名均值"]
df_grouped

4. 获取sina股票数据并进行分析

  • 获取数据地址:http://vip.stock.finance.sina.com.cn/q/go.php/vComStockHold/kind/jjzc/index.phtml?p=
  • 数据分6页,p=1代表第1页

提示

df = pd.DataFrame()
for i in range(6):    url = 'http://vip.stock.finance.sina.com.cn/q/go.php/vComStockHold/kind/jjzc/index.phtml?p={page}'.format(page=i+1)df = pd.concat([df, pd.read_html(url)[0]]) # 按行连接print("第{page}页爬取成功!".format(page=i+1))
# 爬取6页表格数据并合并数据到df,再保存到sina.csv文件
df.to_csv('../data/sina.csv', encoding='utf-8', index=False,sep=",")
# 从sina.csv中读取到df,并随机显示10行数据
df = pd.read_csv(fr"../data/sina.csv",encoding='utf-8', sep=",")
df.sample(10)

# 基金持股比例最高的10个股份的 代码 简称 比例
df_top = df.sort_values(by="持股比例(%)",ascending=False).reset_index(drop=True)[["代码","简称","持股比例(%)"]]
df_top.head(10)

# 按照持股家数分组 计算 持股占已流通A股比例(%) 的平均数 降序
df.groupby(by="家数")[["持股占已流通A股比例(%)"]].mean().sort_values(by="持股占已流通A股比例(%)",ascending=False)

# 统计银行的平均 家数 和 平均 持股比例(%) (简称含有银行字眼)
df_bank = df.query('简称.str.contains("银行")', engine='python').reset_index(drop=True)[["简称","家数","持股比例(%)"]]
df_bank

# 统计家数增加最多的10个股票,按 持股占已流通A股比例(%) 降序排序
df["增加家数"] = df["家数"] - df["上期家数"]
df.head()df_10 = df.sort_values(by="增加家数",ascending=False).reset_index(drop=True).head(10)
df_10df_10.sort_values(by="持股占已流通A股比例(%)",ascending=False).reset_index(drop=True)

# 将 持股占已流通A股比例(%)>8 同时 持股比例(%)>5 的股票挑选出来
df.loc[(df["持股占已流通A股比例(%)"] > 8) & (df["持股比例(%)"] > 5)]

# 将%号加到 持股占已流通A股比例(%) 和 持股比例(%) 两列, 元素值改为字符串
# 使用apply和lambda表达式添加%号,并转换为字符串  
df['持股占已流通A股比例(%)'] = df['持股占已流通A股比例(%)'].apply(lambda x: f"{x}%" if not pd.isna(x) else pd.NA)  
df['持股比例(%)'] = df['持股比例(%)'].apply(lambda x: f"{x}%" if not pd.isna(x) else pd.NA)  # 查看修改后的DataFrame  
df

5. matplotlib模仿绘图

按绘图样式,写出绘制代码。

在这里插入图片描述

# 代码
# 创建⼀些数据
x1 = np.linspace(0, 5, 100)
x2 = np.linspace(0, 2*np.pi, 100)
x3 = np.linspace(0, 2*np.pi, 100)y1 = np.sin(2*np.pi*x1)
y2 = np.sin(x2)
y3 = np.cos(x3)
# 创建⼀个新的Figure,包含2x2个Axes
fig = plt.figure(figsize=(16, 12))
# 在2x2⽹格中创建4个Axes# =========================================第一幅图=========================================
plt.subplot(2, 2, 1) # 第⼀⾏第⼀个
plt.plot(x1, y1, linestyle='-')
# 设置左上角的子图横坐标范围为0到5(留白效果),纵坐标范围为-2.0到2.0  
plt.xlim(-0.3, 5.3)  
plt.ylim(-2.0, 2.0)  
plt.xlabel("x轴")
plt.ylabel("y轴")# =========================================第二幅图=========================================
plt.subplot(2, 2, 2) # 第⼀⾏第⼆个
plt.plot(x2, y2, linestyle='-.',color='m')
# 设置横坐标的刻度位置和标签  
ticks = np.arange(0, 2 * np.pi + np.pi/4, np.pi/2)  # 刻度位置:从0开始,每隔π/2一个刻度  
labels = [r'$0$', r'$\frac{\pi}{2}$', r'$\pi$', r'$\frac{3\pi}{2}$', r'$2\pi$']  # 对应的标签  
plt.xticks(ticks, labels)  # 设置刻度和标签  # 设置横坐标范围,稍微扩大以留下空白  
plt.xlim(-0.3, 2 * np.pi + 0.3)  
plt.ylim(-1.5, 1.5) 
plt.xlabel("y=sin(x)")# =========================================第三幅图=========================================
plt.subplot(2, 2, 3) # 第⼆⾏第⼀个
plt.plot(x3, y3, linestyle='--',color='m')
# 设置横坐标的刻度位置和标签  
ticks = np.arange(0, 2 * np.pi + np.pi/4, np.pi/2)  # 刻度位置:从0开始,每隔π/2一个刻度  
labels = [r'$0$', r'$\frac{\pi}{2}$', r'$\pi$', r'$\frac{3\pi}{2}$', r'$2\pi$']  # 对应的标签  
plt.xticks(ticks, labels)  # 设置刻度和标签  # 设置横坐标范围,稍微扩大以留下空白  
plt.xlim(-0.3, 2 * np.pi + 0.3)  
plt.ylim(-1.5, 1.5)  
plt.xlabel("y=cos(x)")plt.show()

6. matplotlib模仿绘图

按绘图样式,写出绘制代码。

  • 绘图函数:y=sin(x), y=cos(x), x = np.linspace(-np.pi, np.pi, 256, endpoint=True)
  • 绘制填充区域: 紫色区域:(-2.5<x)&(x<-0.5),绿色区域:sinx>0.5

在这里插入图片描述

# 代码
import numpy as np
import matplotlib.pyplot as plt# 创建一个大小为(10, 6)的图像,设置分辨率为80
plt.figure(figsize=(10,6), dpi=80)# 生成一个从-pi到pi的256个点的等差数列
x = np.linspace(-np.pi, np.pi, 256, endpoint=True)# 计算x对应的sin和cos值
C, S = np.cos(x), np.sin(x)# 绘制sin(x)曲线,设置颜色为蓝色,线宽为2.5,线型为实线
plt.plot(x, S, color="blue", linewidth=2.5, linestyle="-", label=r'$sin(x)$')# 绘制cos(x)曲线,设置颜色为红色,线宽为2.5,线型为实线
plt.plot(x, C, color="red", linewidth=2.5, linestyle="-", label=r'$cos(x)$')# 填充cos(x)曲线在x范围(-2.5, -0.5)之间的区域,颜色为深紫色(DarkViolet),透明度为0.5
plt.fill_between(x, C, where=((-2.5 < x) & (x < -0.5)), color='DarkViolet', alpha=0.5)# 填充sin(x)曲线在值大于0.5的区域,颜色为深绿色(DarkGreen),透明度为0.5
plt.fill_between(x, S, where=(S > 0.5), color='DarkGreen', alpha=0.5)# 添加图例,位于左上角,并设置图例的背景色为白色
plt.legend(loc='upper left', facecolor='white')# 设置x轴和y轴的范围
plt.xlim(x.min()*1.2, x.max()*1.2)
plt.ylim(C.min()*1.2, C.max()*1.2)# 设置x轴和y轴的刻度标签
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.yticks([-1,1], [r'$-1$', r'$1$'])# 移动坐标轴到原点
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['bottom'].set_position(('data',0))
ax.spines['left'].set_position(('data',0))# 设置特殊点的标记和注释
t = 2*np.pi/3
plt.plot([t,t],[0,np.cos(t)], color ='red', linewidth=2.5, linestyle="--")
plt.scatter([t,],[np.cos(t),], 50, color ='red')
plt.annotate(r'$sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',xy=(t, np.sin(t)), xycoords='data',xytext=(+10, +30), textcoords='offset points', fontsize=16,arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))plt.plot([t,t],[0,np.sin(t)], color ='blue', linewidth=2.5, linestyle="--")
plt.scatter([t,],[np.sin(t),], 50, color ='blue')
plt.annotate(r'$cos(\frac{2\pi}{3})=-\frac{1}{2}$',xy=(t, np.cos(t)), xycoords='data',xytext=(-90, -50), textcoords='offset points', fontsize=16,arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))# 添加标题,并设置标题的颜色为绿色,位置为中心
plt.title('绘图实例之SIN()&COS()', color="green", loc="center")# 添加网格线
plt.grid(True)# 显示图像
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/1188.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面试(05)————Redis篇

目录 一、项目中哪些地方使用了redis 问题一&#xff1a;发生了缓存穿透该怎么解决&#xff1f; 方案一&#xff1a;缓存空数据 方案二&#xff1a;布隆过滤器 模拟面试 问题二&#xff1a; 发生了缓存击穿该怎么解决&#xff1f; 方案一&#xff1a;互斥锁 方案二&#xff…

Python数据可视化:频率统计条形图countplot()

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 Python数据可视化&#xff1a; 频率统计条形图 countplot() [太阳]选择题 请问关于以下代码表述正确的选项是&#xff1f; import seaborn as sns import matplotlib.pyplot as plt data { …

断言(Assertion)在IT技术中的确切含义— 基于四类典型场景的分析

当“断言”&#xff08;Assertion&#xff09;一词成为IT术语时&#xff0c;语义的混沌性和二义性也随之而生。那么&#xff0c;何为断言&#xff1f;断言何为&#xff1f;实际上&#xff0c;只需分析四种典型场景&#xff0c;确切答案和准确描述就将自然显现。 在SAML&#xf…

Scikit-Learn

机器学习中的重要角色 Scikit-Leran&#xff08;官网&#xff1a;https://scikit-learn.org/stable/&#xff09;&#xff0c;它是一个基于 Python 语言的机器学习算法库。Scikit-Learn 主要用 Python 语言开发&#xff0c;建立在 NumPy、Scipy 与 Matplotlib 之上&#xff0c;…

【python】使用python和selenium实现某平台自动化上传作品的全步骤

第一&#xff0c;我们需要下载python并安装 下载地址&#xff1a;https://www.python.org/downloads/release/python-3123/ 3.x版本的python自带pip工具&#xff0c;因此不需要额外下载。 ModuleNotFoundError: No module named seleniumpip用于下载python适用的各类模块&…

Proxy 代理

意图 为其它对象提供一种代理以控制这个对象的访问。 结构 Proxy保存一个引用使得代理可以访问实体&#xff1b;提供一个与Subject的接口相同的接口&#xff0c;使代理可以用来替代实体&#xff1b;控制实体的存取&#xff0c;并可能负责创建和删除它&#xff1b;其他功能依赖…

用户体验至上:独立站脱颖而出的关键要素解析

在数字化时代&#xff0c;独立站成为了许多品牌和企业展示自身形象、推广产品、建立客户联系的重要平台。然而&#xff0c;要想在众多的独立站中脱颖而出&#xff0c;吸引并留住用户&#xff0c;良好的用户体验至关重要。本文Nox聚星将和大家探讨如何做好独立站的用户体验&…

【Linux深造日志】运维工程师必会Linux常见命令以及周边知识!

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《linux深造日志》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 引入 哈喽各位宝子们好啊&#xff01;我是博主鸽芷咕。日志这个东西我相信大家都不陌生&#xff0c;在 linxu/Windows 系统…

【自定义类型详解】完结篇——联合体(共用体)与枚举详解

先赞后看已成习惯&#xff01;&#xff01;&#xff01; 联合体 1. 联合体的定义 联合体又叫共用体&#xff0c;它是一种特殊的数据类型&#xff0c;允许您在相同的内存位置存储不同的数据类型。给联合体其中⼀个成员赋值&#xff0c;其他成员的值也会跟着变化。 联合体的结…

kaggle 房价预测 得分0.53492

流程 导入需要的包引入文件,查看内容数据处理调用模型准备训练输出结果 导入需要的包 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model i…

适合各大资源网投稿html源码

源码介绍 适合各大资源网投稿html源码&#xff0c;源码由HTMLCSSJS组成&#xff0c;记事本打开源码文件可以进行内容文字之类的修改&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务器里面&#xff0c;重定向这个界面 效果预览 源码下载 适合各大资源…

数据分析(1)

数据分析基础&#xff08;1&#xff09; 为了让刚开始学习的朋友对数据分析有一个清晰的整体认识&#xff0c;因此笔者在此对数分进行一个较为详细的介绍有助于大家更好的在宏观层面进行理解&#xff0c;避免在后续学习中产生迷茫。 数据分析的概念 定义&#xff1a;数据分析…

Oracle体系结构初探:聊聊REDO

上一篇文章写了undo&#xff08;文章链接&#xff1a;聊聊UNDO&#xff09;&#xff0c;这篇和大家一起聊聊redo。redo如果按照我的傻瓜翻译&#xff0c;意为再次去做、重新去做。Oracle官方对于redo的描述是&#xff1a;记录对数据所做的所有更改&#xff0c;包括未提交和已提…

Vue3——组件基础

组件基础 1. 组件定义与使用 1.1 代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>组件基础&l…

Docker - 镜像、容器、仓库

原文地址&#xff0c;使用效果更佳&#xff01; Docker - 镜像、容器、仓库 | CoderMast编程桅杆Docker - 镜像、容器、仓库 提示 这个章节涉及到 Docker 最核心的知识&#xff0c;也是在使用过程中最常使用到的&#xff0c;需要重点学习。 什么是Docker镜像、容器、仓库&…

leetcode:438. 找到字符串中所有字母异位词

给定两个字符串 s 和 p&#xff0c;找到 s 中所有 p 的 异位词 的子串&#xff0c;返回这些子串的起始索引。不考虑答案输出的顺序。 异位词 指由相同字母重排列形成的字符串&#xff08;包括相同的字符串&#xff09;。 示例 1: 输入: s "cbaebabacd", p "…

前端工程化01-复习jQuery当中的AJAX

4.1、基础概念 什么是服务器 一台存储网站内容、网站文件的电脑 什么是资源 网站中使用的文件&#xff08;html、css、图片、…&#xff09;这些东西就叫做资源数据也是服务器上的资源&#xff0c;而且是一个网站的灵魂 客户端 客户端应该指上网的设备但是在前端开发中&a…

Web后端-请求响应

黑马程序员JavaWeb开发教程 文章目录 一、请求1、简单参数2、实体参数3、数组集合参数&#xff08;1&#xff09;数组参数&#xff08;2&#xff09;集合参数 4、日期参数5、json参数&#xff08;1&#xff09;在Postman中怎么发起请求来传递JSON格式的请求参数&#xff08;2&a…

精通MongoDB聚合操作API:深入探索高级技巧与实践

MongoDB 聚合操作API提供了强大的数据处理能力&#xff0c;能够对数据进行筛选、变换、分组、统计等复杂操作。本文介绍了MongoDB的基本用法和高级用法&#xff0c;高级用法涵盖了setWindowFields、merge、facet、expr、accumulator窗口函数、结果合并、多面聚合、查询表达式在…

卷王问卷考试系统/SurveyKing调查系统源码

SurveyKing是一个功能强大的开源调查问卷和考试系统&#xff0c;它能够快速部署并适用于各个行业。 这个系统提供了在线表单设计、数据收集、统计和分析等功能&#xff0c;支持20多种题型&#xff0c;提供多种创建问卷的方式和设置。 项 目 地 址 &#xff1a; runruncode.c…